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Abstract

Algorithms can facilitate collusive behaviors among competing firms. It is chal-
lenging for the antitrust authority to monitor and detect algorithmic collusion due
to complicated price patterns and frequent price changes. In this paper, we study
two important issues assuming that the antitrust authority employs algorithms: how
firms respond to an algorithmic antitrust authority and what price patterns the al-
gorithmic antitrust authority would detect. In a framework of quantity competition
between two firms, we develop a static theoretical model describing the interaction
between the algorithmic authority and firms, and then simulate their behavior using a
Q-learning algorithm. We find that the simulation results are partially consistent with
the static model, and that the antitrust authority’s algorithms can effectively boost
firms’ quantities and reduce the possibility of algorithmic collusion. The results are
robust to alternative algorithms, different levels of auditing strictness, asymmetry of
learning rate between the authority and firms, and replacing quantity-based auditing
with price-based auditing. The effectiveness of auditing mainly relies on firms’ cost
structure and the authority’s incentive to audit.
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1 Introduction

As the explosion of Artificial intelligence (AI), algorithms have been increasingly used to

price goods and services in competitive markets. With the help of AI, algorithms are ca-

pable of learning and discovering profit-enhancing collusive pricing rules. Recent empirical

and simulation studies have shown that algorithms may find and maintain supracompetitive

prices without communication between competing firms. On the simulation side, Calvano

et al. (2020b) and Klein (2021) demonstrate that algorithmic pricing adopted by compet-

ing, profit maximizing firms can lead to substantially higher prices than their competitive

counterparts. On the empirical side, Assad et al. (2024) provides empirical evidence of al-

gorithmic collusion in Germany’s retail gasoline markets. Adopting algorithms increases gas

stations’ markup by 20 to 30%. The findings are consistent with the results of simulation

studies.1

The recent development in algorithmic pricing raises concerns regarding the possibility

of algorithmic collusion for government authorities. Both the U.S. Federal Trade Commis-

sion (FTC) and the European Commission have already considered the possible impacts of

using algorithms, artificial intelligence, and predictive analytics in business decisions and

their conduct on consumer welfare.2 However, it is still an open question how antitrust

agencies identify collusive pricing rules when firms use algorithms. Recently, Calvano et al.

(2020a) suggests that the authorities identify the collusive pricing rules by checking proper-

ties of prices derived from economic theory and studies of human collusion. However, it is

unclear whether price patterns of algorithmic collusion are consistent with those predicted

by economic theory.

Instead of detecting algorithmic collusion based on predetermined pricing rules implied

by economic theory and human collusion, we consider a different and novel approach to

detect algorithmic collusion in this paper. The main idea is that the authorities also employ

algorithms to audit firms’ prices and find the collusive price patterns. We address several

important questions on detecting algorithmic collusion. First, whether detecting collusion

using algorithms can be effective. Second, what pricing patterns an algorithmic authority

identifies to be collusive. Third, how competitive firms using algorithms respond to the

algorithmic authority.

We first develop a theoretical model describing the auditing game, in which two firms

produce a homogeneous product and compete in quantity, and they can collude with a contact

cost. An antitrust authority tries to identify and penalize the supracompetitive behavior of

1The empirical evidence is indirect because the time of adoption of the pricing algorithms is not observed
but inferred.

2Please see Commission et al. (2018) and OECD (2017).
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the firms. We solve the game under two cost structures: firms’ costs are the same and fixed,

and each firm’s cost is randomly drawn from a binary distribution. We prove the existence of

equilibria under both cost structures. Under fixed cost, firms either produce at the Cournot

level or the monopoly level. The authority employs a pure strategy to audit: it audits when

both firms’ quantities are lower than the Cournot level and does not audit otherwise. When

marginal costs are random, firms collude with positive probability and the authority audits

using a mixed strategy provided that the benefit-cost ratio for the authority is sufficiently

large. The static game provides a benchmark for the comparison of the simulation results.

We simulate the model by using a Q-learning algorithm, one of the most widely used

algorithms in reinforcement learning. The algorithm mimics a rational agent’s behavior in a

finite Markov decision process and learns the value as a function of action and state variables

to maximize its present value of discounted payoff. In the simulation setup, we consider a

Cournot model where two competing firms with private marginal costs set quantities for

identical products by algorithms. The antitrust authority employs Q-learning to monitor

and detect collusion by the following decision rule: Whenever both firms’ quantities are

lower than the Cournot quantities at a predetermined threshold, the firms are identified to

be collusive. The antitrust authority is rewarded by successfully detecting collusion and

firms incur loss due to detected collusive behavior. The state variables for firms are both

firms’ quantities and the authority’s auditing decision in the previous period. In addition to

these variable, the authority also observes firms’ quantities in the current period as its state

variable.

In the simulation experiments, we consider two setups: with and without the antitrust

authority. For both setups, we consider two cost structures: both firms have the same

constant marginal cost, and both firms’ costs are randomly drawn from a binary distribution

with the support of high and low costs. In all the combined scenarios above, we simulate

the learning process of firms’ quantities and payoff, market price, the authority’s auditing

probability and payoff, consumer surplus, and total surplus. We further check how those

simulated objectives change with the authority’s incentive, measured by its benefit-cost ratio.

The simulation results demonstrate that without the authority, firms learn to collude

and produce 18% and 5% below the static Cournot equilibrium when costs are fixed and

random, respectively. Also, it takes longer for firms to collude when the costs are random.

When the antitrust authority joins the game, the convergence process of the firms changes

substantially. The authority’s auditing is effective in improving the quantities to the Cournot

level or above. When marginal cost is fixed, the authority’s auditing is successful regardless

of the incentive of the authority. A generic pattern is that the firms first produce below

the Cournot quantity and the authority audits with a high probability around 50%. As a
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response, firms quickly adjust their quantities above the Cournot quantity, then gradually

learn to produce at the Cournot level.

When marginal costs are random, the auditing is effective only when the authority’s

incentive is sufficiently strong (the benefit-cost ratio is greater than 2). When the incentive

is weak, the auditing is not successful: even though firms increase quantities as a consequence

of the relatively higher auditing probability at the beginning, the converged quantity is still

lower than the Cournot level. As the benefit-cost ratio increases to 2 and 4, however,

the authority’s highest auditing probability increases from 50significantly to 80% and 90%,

respectively. The firms respond to the auditing by increasing quantities significantly, which

converge to 0.350 and 0.349, respectively, both of which are higher than the Cournot quantity.

As the quantity increases, the authority learns to audit with smaller probabilities.

The authority’s auditing probabilities conditional on the firms’ quantities in the cur-

rent period show that the auditing behavior is consistent with the static game under fixed

marginal cost: the authority audits with probability one whenever both firms’ quantities are

lower than the Cournot level, otherwise, the authority does not audit at all. Under random

marginal costs, the authority’s auditing behavior is largely consistent with the prediction

of the static game. It can learn to identify the four equilibria quantity combinations where

it does not audit. The authority audits when the quantities deviate from three of the four

equilibria above. However, the static equilibrium predicts that auditing occurs only at one

of the four equilibria.

To check the robustness of our findings, we change (1) the penalty parameter of the

authority such that the auditing is less strict and (2) the learning rate of the authority such

that it learns slower than the firms. We find that our findings are robust to those changes.

We also check the simulation results by changing the model setup. First, we employ the

Actor-Critic algorithm to replace Q-learning. Different from Q-learning that learns value

function, Actor–Critic is a hybrid policy/value method — it explicitly learns a policy (actor)

guided by a value estimate (critic). Q-learning uses discrete action selection via argmax,

while Actor–Critic can handle continuous actions more easily and tends to learn smoother

policies. The simulation results using Actor-Critic provide the similar main message as

Q-learning: the auditing is effective in restricting firms from learning to collude and the

effectiveness depends on cost structure. The major difference between the two sets of results

is that Actor-Critic never audits with probability 1, and it audits with probability 0 only

at the four equilibria discussed above. The comparison of the two algorithm demonstrates

that our findings are robust to the algorithms, too. The second model change is that the

state variable is changed from quantity to price. This is motivated by the fact that in some

markets, only price rather than quantity is observed. In the modified model, firms’ state
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variables are the market price and the authority’s auditing decision in the previous period,

and the authority’s state variables include the state variables of firms and the current period

market price. We find from the simulation results that the authority audits with higher

probabilities at the early stage, therefore the game converges faster than in the baseline

case. An interpretation of the discrepancy is that the information in market price is “more

aggregated” than two quantities. For all the quantities combinations that correspond to the

same market price, the authority may only audits some of the combinations. However, when

price is the state variable, the authority likely audits this price with probability 1.

The main contribution of our paper to the literature on algorithmic pricing is to investi-

gate the possibility of detecting collusion by algorithms. As we discussed above, the existing

literature on detecting collusion due to algorithmic pricing still focuses on the price patterns

derived from economic theory or human collusion (e.g., see Calvano et al. (2020a)). We show

that it is possible to detect collusion successfully using algorithms. These results are the first

in the literature on detecting algorithmic collusion by algorithms. Our results shed light on

antitrust practice in the presence of algorithmic collusion due to algorithmic pricing by com-

peting firms. A related work to ours is Johnson et al. (2023). This paper discusses how a

platform can design policies to promote competition and prohibit algorithmic collusion on

the platform. The main idea is that the platform’s policy can affect the demand of a firm

by promoting those products with low prices such that colluding to increase prices is not

profitable. Nevertheless, the platform policies do not apply to market competition because

the antitrust authority is not supposed to intervene the market.

Another contribution of our paper is to show the impacts of cost uncertainty on algorith-

mic pricing and algorithmic collusion. The growing literature on algorithmic pricing mainly

focuses on the effects of algorithms on competition, leaving information fixed. For example,

Asker et al. (2023) finds that algorithms may not lead to collusion if learning is synchronous.

Wang et al. (2023) analyzes the competition between learning algorithms and rule-based

algorithms. Dou et al. (2023) studies the impacts of AI in capital markets. None of them

explores how information structures of costs affect algorithmic pricing. We find that cost

randomness plays a crucial role in algorithmic collusion and auditing. The auditing is more

effective under random costs because firms find it more difficult to collude.

The outline of the remaining paper is as follows. Section 2 presents a static model to

describe the competition between firms and the monitoring and auditing behavior of an

antitrust authority. Section 3 summarizes the Q-learning and simulation setup. Section

4 summarizes simulation results and robustness checks. Section 5 extends our simulation

studies to alternative models, and Section 6 concludes. We provide simple analyses for our

model in the static case in the Appendix.
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2 Theoretical Models

To establish a basis for simulation analysis, we introduce Cournot games in two scenarios:

Firms compete non-cooperatively in quantities and firms compete cooperatively in quantities

with communication costs. In both games, we study their static equilibrium with and without

monitoring from an antitrust authority.

When the game is non-cooperative, firms produce at the Cournot-Nash equilibrium. It

is easy to compute that a firm with cost ci produces q
c
i = (2b+ c̄− 3ci)/(6a), i = 1, 2 at the

equilibrium, where c̄ is the average cost of the two firms. The expected profit of this firm is

E[πi|ci] = (2b+ c̄− 3ci)
2/(36a), i = 1, 2. Since firms are not colluding, the strategy for the

antitrust authority at the equilibrium is not to audit at all.

In the remainder of this section, we study a cooperative Cournot game under two cost

structures: fixed marginal costs and random marginal costs. In each cost structure, we

consider the equilibrium with and without an antitrust authority.

2.1 Model setup

In this section, we set up the collusion game without and with an antitrust authority.

Two firms compete in a three-stage game. In stage 0, nature randomly selects a firm,

which will be able to contact the other firm for colluding in stage 1. The selected firm can pay

a cost ζ, which is drawn from a distribution Fζ(·), to contact the other firm for collusion. In

stage 1, each firm draws a marginal cost of production from either a degenerate distribution

(c) or a two-point distribution that takes the value cl and ch with equal probability, where

cl < ch and we denote c̄ = (cl+ch)/2 = c. The costs are private information and independent

across firms. In stage 2, firms face an inverse demand function P = b− aQ, where Q is the

aggregate supply from the two firms, and produce with constant marginal costs. The firms

engage in Cournot competition if the selected firm does not contact the other firm in stage

2. Otherwise, firms reveal their marginal costs to each other and bargain over the pair

of production quantities, with the threat point being the Cournot equilibrium with known

costs. We use Kalai bargaining with firms having equal bargaining power and assume there

is no side payment.

Now we introduce an antitrust authority. It observes the quantities produced by both

firms in stage 2 and then decide whether to investigate at a cost ξ. If it investigates, the two

firms need to submit data on their marginal costs. Then the antitrust authority calculates

the quantities produced in the Cournot equilibrium with incomplete information. If any

of the observed quantities from the firms falls below θ ≤ 1 times the Cournot equilibrium

quantity, it decides there is a collusion, and a colluding firm needs to pay a penalty κ. The
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authority obtains a payoff v if it successfully detects collusion. We consider the case where

θ is close to 1.

This completes the description of the game. We next solve the model using backward

induction.

2.2 Fixed marginal costs

We first consider the game where both firms have the same marginal cost c. One can show

that if firms collude, the total quantity is qm = (b − c)/(2a) and the profit of a firm is

Πm (c) = qm (b− aqm − c) /2 = (b− c)2 /(4a). If firms play the Cournot equilibrium, then

the total quantity is qc = 2 (b− c) /(3a) and the profit of a firm is Πc (c) = (b− c)2 /(9a).

When there is no antitrust authority, firms collude if and only if the benefit of collusion is

greater than the contact cost, i.e.,

Πm (c)− Πc (c) =
(b− c)2

4a
− (b− c)2

9a
=

5 (b− c)2

36a
≥ ζ.

This implies that the collusion probability without an antitrust authority is

P (collude) = Fζ (Π
m(c)− Πc(c)) = Fζ

(
5 (b− c)2

36a

)
.

If the two firms collude, they collectively produce (b− c)2/(4a). When 5(b− c)2/(36a) < ζ,

firms do not collude and each produce qc.

Once we introduce the antitrust authority, firms’ strategy will change. Because c is

degenerate and known to all players, the authority audits if and only if q < θqc. Therefore,

if firms decide to collude, they either choose q = θqc or qm. One can show that the profit for

a firm from producing q = θqc is (3− 2θ) θ (b− c)2 /(9a). The chosen quantity q is

q =

θqc if (3−2θ)θ(b−c)2

9a
> (b−c)2

4a
− κ

qm if (3−2θ)θ(b−c)2

9a
< (b−c)2

4a
− κ

.

Note that (3−2θ)θ(b−c)2

9a
< (b−c)2

4a
for all θ ∈ (0, 1). Therefore, if κ is too small, firms choose

to collude and produce qm even with monitoring. In such a case, the benefit from colluding

declines from 5 (b− c)2 /(36a) discussed above to 5 (b− c)2 /(36a) − κ, and the colluding
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probability reduces to

P1 = Fζ

(
5 (b− c)2

36a
− κ

)
.

If κ is sufficiently large, firms choose θqc over qm and the benefit from colluding is

(3− 2θ) θ (b− c)2

9a
− (b− c)2

9a
=

(3θ − 2θ2 − 1) (b− c)2

9a
.

The benefit strictly increases in the tolerance parameter θ when 0 < θ ≤ 3/4 and then

decreases. Then, the colluding probability is

P2 = Fζ

(
(3θ − 2θ2 − 1) (b− c)2

9a

)
.

Based on the behavior of the firms, the equilibrium strategy of the antitrust authority is

to audit whenever the quantity is less than or equal to θqc and not to audit whenever the

quantity is greater than θqc. We summarize the equilibrium in the following proposition.

Proposition 1 When both firms have marginal cost c, there is an equilibrium where firms

collude with probability P1 and each produce θqc for small κ and with probability P2 for large

κ and each produce qm. The equilibrium auditing strategy is

m (q) =

0 if q ≥ θqc

1 otherwise
.

2.3 Model with random marginal costs

In this section, we consider a collusion game where firms have random marginal costs, i.e.,

ci ∈ {cL, cH}. We first analyze the case without the antitrust authority using backward

induction.

Stage 2: There are two possibilities depending on whether the firm selected by nature

in stage 1 contacts the other firm in stage 2. If the selected firm does not contact the

other firm in stage 2, the two firms engage in Cournot competition without knowing the

marginal costs of their opponents. After some algebra, one can show a firm with cost ci

produces qc(ci) =
2b+c̄−3ci

6a
, i = l, h. The expected profit is E[πi|ci] = (2b+c̄−3ci)

2

36a
, i = l, h.

If the selected firm contacts the other firm in stage 2, the two firms jointly determine their
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quantities (q1, q2). They maximize firm 1’s surplus subject to firm 2 getting the same surplus:

π(c1, c2) = max
q1,q2

(b− aq1 − aq2 − c1)q1 −M(c1, c2)

st. (b− aq1 − aq2 − c1)q1 −M(c1, c2) = (b− aq1 − aq2 − c2)q2 −M(c2, c1), (1)

where M(c1, c2) is the profit of a firm in a Cournot game when the firm has a marginal cost

c1 and its opponent has a marginal cost c2. It can be shown that

M(c1, c2) =
(2b+ c2 − 3c1)

2

36a
. (2)

One can show that the bargaining problem above leads to a unique solution. Let qn(c1, c2)

be the quantity solved when two firms’ costs are c1 and c2, respectively, and π(c1, c2) be

the corresponding profit. Notice that if c1 = c2 = c, then bargaining achieves the monopoly

outcome and the quantity produced by a firm is qn(c, c) = (b − c)/(4a), and a firm’s profit

is πn(c, c) = (b− c)2/(4a).

Stage 1: Only the firm selected in the first stage needs to make a decision. The expected

profit from colluding is

Πn(c) =
πn(c, cl) + πn(c, ch)

2
. (3)

Let Πc(c) be the profit under Cournot competition

Πc(c) =
(2b+ c̄− 3c)2

36a
. (4)

The firm contacts the other firm if ζ < Πc(c) − Πn(c), which implies a contact probability

of Fζ(Π
c(c)− Πn(c)).

We summarize the findings above in the following proposition.

Proposition 2 When firms’ marginal costs are randomly drawn from {cL, cH} with equal

probability and there is no antitrust authority, there exists a unique equilibrium such that if

costs are (c1, c2), then

1. Firms produce (qc(c1), q
c(c2)) if they do not collude. They produce (qn(c1, c2), q

n(c2, c1))

if they collude.

2. Firms collude with probability

Pn(c1, c2) =
Fζ(Π

c(c1)− Πn(c1)) + Fζ(Π
c(c2)− Πn(c2))

2
. (5)
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It is obvious that if there is no contact cost, i.e., ζ = 0, two firms would collude for sure and

produce (qn(c1, c2), q
n(c2, c1)).

2.3.1 Model with an Antitrust Authority

Now we introduce the antitrust authority and analyze the model equilibrium. Depending on

the costs of two firms, we summarize all the scenarios below.

• If costs are (cl, cl), firms produce (qcl , q
c
l ) if none of the firms contacts the other firm

for collusion. If one of the firms contacts the other, they produce (θqcl , θq
c
l ), (q

c
h, q

c
h) or

(θqch, θq
c
h), which yield the same profit.3

• If costs are (ch, cl), firms produce (qch, q
c
l ) if collusion is not successful. If collusion is

successful, they produce (θqch, θq
c
l ). If costs are (cl, ch), the results are similar.

• If costs are (ch, ch), they produce (qch, q
c
h) when collusion fails and produce (θqch, θq

c
h).

Next, we derive the probability of collusion in all the cases above.

If a firm has cost cl, the expected profit from Cournot competition is

Πc(cl) =
(2b+ c̄− 3cl)

2

36a
. (6)

If the firm contacts the other firm, the profit is as follows.

Πn(cl) =
θ(2b+ c̄− 3cl) [b− 2θ(b− c̄)/3− cl − θ(c̄− cl)/2]

6a
. (7)

Notice that Πn(cl) > Πc(cl) for all θ close to 1 if b > c̄. Then the firm contacts the other

firm if and only if ζ < Πn(cl) − Πc(cl), which implies that the probability of contacting is

Pr(cl) = Fζ (Π
n(cl)− Πc(cl)).

Similarly, if the firm’s cost is ch, its profit under Cournot competition is

Πc(ch) =
(2b+ c̄− 3ch)

2

36a
. (8)

If it contacts the other firm, the profit is

Πn(ch) =
θ(2b+ c̄− 3ch) [b− 2θ(b− c̄)/3− ch − θ(c̄− ch)/2]

6a
. (9)

Then the probability of contacting is Pr(ch) = Fζ (Π
n(ch)− Πc(ch)).

3We focus on the case where firms do not collude on (qch, q
c
l ), (q

c
l , q

c
h), (θq

c
h, θq

c
l ) and (θqcl , θq

c
h). This

occurs if θ is sufficiently close to 1 and qch is not significantly higher than qcl .
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Based on the probability of contact, we can obtain the probability of collusion, denoted

by Pn(·, ·), for each pair of costs. After some derivation, one can show Pn(cl, cl) = Pr(cl),

Pn(cl, ch) = Pn(ch, cl) = (Pr(cl) +Pr(ch))/2, and Pn(ch, ch) = Pr(ch).

Lastly, we derive the distribution of the quantities produced if the costs are (cl, cl). Let

γ(x, y) be the probability that firm 1 produces x and firm 2 produces y. Then γ(x, y) > 0

only if (x, y) = (θqcl , θq
c
l ), (q

c
h, q

c
h) or (θqch, θq

c
h). To make the authority indifferent between

monitoring or not if the quantities produced are (qch, q
c
h),

Pn(cl, cl)γ(q
c
h, q

c
h)

Pn(cl, cl)γ(qch, q
c
h) + 1−Pn(ch, ch)

v − ξ = 0, (10)

which implies

γ(qch, q
c
h) =

(1−Pn(ch, ch))ξ

Pn(cl, cl)(v − ξ)
. (11)

Similarly, to make the authority indifferent between monitoring or not if the quantities

produced are (θqch, θq
c
h),

Pn(cl, cl)γ(θq
c
h, θq

c
h)

Pn(cl, cl)γ(θqch, θq
c
h) +Pn(ch, ch)

v − ξ = 0, (12)

which implies

γ(θqch, θq
c
h) =

Pn(ch, ch)ξ

Pn(cl, cl)(v − ξ)
. (13)

To ensure γ(θqch, θq
c
h) + γ(qch, q

c
h) < 1, we need v/ξ to be sufficiently large (need simulations

with v/ξ > 2)

Next, we derive the monitoring probability of the authority. We consider the following

m(q1, q2) =


0 if q1 ≥ θqcl and q2 ≥ θqcl
∈ (0, 1) if (q1, q2) = (qch, q

c
h) or (θq

c
h, θq

c
h)

1 otherwise

. (14)

If the costs are (cl, cl), the firms are indifferent between (θqcl , θq
c
l ), (q

c
h, q

c
h) and (θqch, θq

c
h).

This implies

(b− 2aθqch − cl) θq
c
h −m (θqch, θq

c
h)κ = (b− 2aθqcl − cl) θq

c
l ,

(b− 2aqch − cl) q
c
h −m (qch, q

c
h)κ = (b− 2aθqcl − cl) θq

c
l .
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The monitoring probabilities are

m (θqch, θq
c
h) =

(b− 2aθqch − cl) θq
c
h − (b− 2aθqcl − cl) θq

c
l

κ
, (15)

m (qch, q
c
h) =

(b− 2aqch − cl) q
c
h − (b− 2aθqcl − cl) θq

c
l

κ
. (16)

Proposition 3 Suppose that (1) θ is sufficiently close to 1, (2) v/ξ is sufficiently large, and

(3) b > c̄. There exists an equilibrium that satisfies the following. Firms produce Cournot

quantity if they do not collude. They collude with probability probability Pn(ci, cj) if the costs

are ci and cj, i = l, h and j = l, h. If they collude, the following holds.

1. If the costs are (cl, cl), they randomize between (θqcl , θq
c
l ), (q

c
h, q

c
h) and (θqch, θq

c
h) with

probability 1− γ(qch, q
c
h)− γ(θqch, θq

c
h), γ(q

c
h, q

c
h) and γ(θqch, θq

c
h), respectively.

2. If costs are (ci, cj), where i = l, h, j = l, h and i ̸= j, then firms produce (θqci , θq
c
j).

The authority audits with probability 0 if the quantities are (θqch, θq
c
l ) or (θq

c
l , θq

c
h), or (θq

c
l , θq

c
l ).

It audits with probabilities m(θqch, θq
c
h) and m(qch, q

c
h) if the quantities are (θqch, θq

c
h) and

(qch, q
c
h), respectively. It audits with probability 1 for other quantities.

If ζ is degenerate with a value 0, the two firms collude with probability 1 regardless of

their costs. Then firms do not produce qch, q
c
h. To see this, note that if their costs are

(ch, ch), producing (θqch, θq
c
h) always leads to a higher profit than qch, q

c
h. If the costs are

(ch, cl), they produce (θqch, θq
c
l ) or (θqcl , θq

c
h). If costs are (cl, cl), they randomize between

(θqcl , θq
c
l ) and (θqch, θq

c
h). To make the authority indifferent between investigating or not,

γ(θqch, θq
c
h) = ξ/(v − ξ).

3 Q-learning

In this section, we present a multi-agent reinforcement learning (MARL) approach of the

auditing game discussed in Section 2. Reinforcement learning is one of the three basic

machine learning paradigms, alongside supervised learning and unsupervised learning. It

is concerned with how an gent takes actions to maximize the total reward in a Markov

Decision Process (MDP) by learning the environment from her own past experiences. When

multiple agents interact and employ reinforcement learning, it is referred to as multi-agent

reinforcement learning.

The specific reinforcement learning algorithm we use is Q-learning, which is motivated

by the dynamic programming problem in a MDP (Watkins (1989) and Sutton et al. (1998)).

Q-learning allows an agent to learn the optimal policy with little knowledge of the underlying
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environment, and its convergence is guaranteed if all actions are repeatedly sampled in all

states and the action-values are represented discretely (Watkins and Dayan (1992)).

3.1 Single Agent Problems

Consider an unknown stationary Markov Decision process faced by a single agent. In each

period t = 0, 1, 2, . . . , the agent observes a state st ∈ S and then chooses an action at ∈ A.

Both the state space S and action space A are finite and time-invariant, and A is state-

independent. The payoff received by the agent is πt = π(st, at), which could be random,

then the system moves from state st to the next state st+1 ∈ S.
Let a∗(s) represent an optimal policy, which is a mapping from the state space S to the

action space A that maximizes the expected present value of discounted payoff

E

[
∞∑
t=0

δtπt

]
= E

[
∞∑
t=0

δtπ(st, a
∗(st))

]
, (17)

where δ < 1 represents the discount factor. Let V (s) be the value in state s

V (s) = max
a∈A

{
E[π|s, a] + δE[V (s′)|s, a]

}
, (18)

which is the maximum discounted payoff in state s, and Q(s, a) be the choice-specific value

function

Q(s, a) = E[π|s, a] + δE

[
max
a′∈A

Q(s′, a′)|s, a
]
, (19)

which represent the expected discounted payoff of taking action a at state s and choose

optimal policy function a∗(s) in the future. Notice that Q-function is related to the value

function by V (s) = maxa∈A Q(s, a).

Because both A and S are finite, Q-function is simply a matrix. If the Q-matrix were

known ex ante, the optimization problem could be solved by searching the maximizer of the

specific row of Q-matrix corresponding to state s, or

a∗(s) = argmax
a∈A

Q(s, a). (20)

Therefore, as long as the Q-matrix is known, without knowing any underlying model, the

agent is able to solve the optimization problem.

However, the Q-matrix is unknown. The idea of Q-learning is to estimate the Q-matrix

using the following iterative procedure. Starting from an arbitrary initial matrix Q0, the
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algorithm chooses an action at in state st for each time period. After observing the payoff

πt, the algorithm updates one cell of Q-matrix according to the following learning rule while

keeping other cells st ̸= s and at ̸= a unchanged:

Qt+1(s, a) = (1− αt)Qt(s, a) + αt

[
πt + δmax

a∈A
Qt(s

′, a)

]
, (21)

where Qt(s, a) is the “un-updated” element of the Q-matrix, the learning rate parameter

αt ∈ (0, 1] captures the weight the agent puts on “new information” [πt + δmaxa∈AQt(s
′, a)].

When αt is chosen as a constant, “new information” is weighted equally in each period but

the weight on any given piece of “old information” decays across time.

The agent may stuck to a suboptimal policy by applying the algorithm above. For

example, assume that a∗ is the unique maxima in state s, such that for any action a′ ̸= a∗,

we have Q(s, a′) < Q(s, a∗). If the initial Q-matrix Q0 is chosen such at Q0(s, a
∗) < Q0(s, a

′),

then it is possible that the algorithm only updates Qt(s, a
′) rather than Qt(s, a

∗). In such

a scenario, the algorithm will stuck at a′ and never learn that a∗ is the optimal action in

state s. To avoid such an issue and to estimate a∗ and Q-matrix starting from an arbitrary

initial matrix Q0, the algorithm is allowed to “make mistakes”, or to explore non-optimal

actions. The method we use in our analysis is the ε-greedy exploration policy. The idea is

that the algorithm exploits (chooses the currently optimal action) with probability 1 − εt

and to explore (randomize uniformly across all actions) with probability εt in period t. The

probability εt decays with time and is assumed to be ε = e−βt, with β > 0. The algorithm

is characterized by the couple (αt, β).

Watkins and Dayan (1992) proved that the Q-learning algorithm described above con-

verges almost surely to the optimal Q-function defined in (19) if (1) every state-action pair

(s, a) ∈ S × A is updated infinitely often; (2)
∑∞

t=0 αt = ∞,
∑∞

t=0 α
2
t < 0; and (3) πt and

bounded above. In practice, however, αt is often chosen as a constant α, which violates the

convergence condition (2).

3.2 MARL: Quantity competition with auditing

We now present our MARL approach to describing the quantity competition and auditing

modeled in Section 2.

In a market with n = 2 firms producing a homogeneous product, firm i sets the optimal

quantity qi to maximize its profit given its marginal cost ci and the demand D(p). The

optimization problem of firm i is solved by using the Q-learning algorithm discussed above.

An antitrust authority j monitors the market quantities (prices) to detect colluding
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behavior with it objective being maximizing consumer welfare. When all the quantities (or

those quantities corresponding to a substantial portion of demand) in the market reach a pre-

set threshold, the authority conducts an investigation into the possible collusion. Specifically,

the antitrust authority occurs a cost ξa > 0 for auditing. Firms submit their marginal costs

to the authority upon auditing and the authority learns the equilibrium (Cournot) quantities

(qe1, q
e
2). The authority claims that firm i is colluding if qi ≤ θqei , i = 1, 2 and the payoff of

the authority is va > ξa. If qi > θqei for some i, then firm i is innocent and the authority’s

penalty is ζa. The payoff of the authority is 0 without auditing. The antitrust authority

observes qi,t−1 and qi,t,∀i.4 If a firm is audited, a compliance cost ξf occurs. If it is found

colluding, a cost κf occurs. The cost may include penalty and other losses, e.g., reputation

cost and it can be extended to be a function of qei /qi for firm i. If there is no auditing, the

payoff function is the same as in the case without the antitrust authority. In sum, the firm’s

cost is ξf + κf · 1(qi ≤ θqei ).

The timing and information structure of the game are as follows. At the beginning of

period t, each firm observes its own marginal cost in period t and both firms’ quantities and

the authority’s auditing decision in period t − 1, and then chooses its quantity in period.

The authority observes the quantities in period t and t − 1, as well as its auditing decision

in period t − 1 to decide whether to audit at time period t. All the benefit, costs, payoffs,

and penalty are realized at the end of t.

Firms and the authority all use a Q-learning algorithm. The Q-function of the antitrust

authority is

Qa(sa, d) = d ·
(
− ξa +E[1

{
min(qi/qei ) ≤ θ

}
· va − 1

{
min(qi/qei ) ≥ θ

}
· ζa|qt−1, qt]

)
+ δE[max

d′
Qa(s

′, d′)|sa, d]

= d ·
{
E[1 {min(qi/q

e
i ) ≤ θ} · va − (1 {min(qi/q

e
i ) ≥ θ} · ζa + ξa) |qt−1, qt]

}
+ δE[max

d′
Qa(s

′, d′)|sa, d], (22)

where d ∈ {0, 1} is the authority’s binary auditing decision, δ is the discount factor, sa ≡
(q1,t−1, q2,t−1, q1t, q2t, ot−1) is the state variable, and ot−1 is the authority’s auditing decision

4Alternatively, we can assume only qt−1 and qt are observed by the authority. In such case, firms are
required to submit their quantities in addition to their marginal costs if an audit occurs.
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defined as follows.

ot−1 =



0, if dt−1 = 0

1, if dt−1 = 1, mini(qi/q
e
i ) ≥ θ

2, if dt−1 = 1, qi/q
e
i ≤ θ, qj/q

e
j ≥ θ

3, if dt−1 = 1, qi/q
e
i ≥ θ, qj/q

e
j ≤ θ

4, if dt−1 = 1, maxi(qi/q
e
i ) ≤ θ.

(23)

Firm i’s Q-function is

Qi(s, qi) = E[(p(qi, qj)− ci) · qi − d · (ξf + κf · 1(qi/qei ≤ θ))|qt−1, qi, ci, ot−1]

+ δE[max
q′i

Qi(s
′, q′i)|sf , qi, ci], (24)

where the state variable of the firm is sf ≡ (q1,t−1, q2,t−1, ot−1).

It worth noting that in the learning process above, a firm has no knowledge about its

rival’s cost, even in the case where both firms have the same and constant marginal cost.

The antitrust authority learns firms’ marginal costs from a subpoena whenever it makes an

auditing decision. However, the authority needs to continue to learn firms cost because it

has no knowledge of firms’ cost structure at all.

As is well known, there is no theoretical guarantee of convergence for a MARL approach.

This is because in MARL, each agent’s learning makes the “environment” non-stationary

for other agents, so the usual single-agent convergence arguments fail. Nevertheless, in our

simulation studies we almost always experience convergence, as in some other studies, e.g.,

Calvano et al. (2020b) and Johnson et al. (2023).

3.3 Simulation setup

In our simulation experiments, we specify the demand as a linear function p = p0 −
∑n

i=1 qi

with p0 = 2. The average marginal cost for both firms is c̄ = 1. We consider two structures

of costs: (1) marginal cost is c = 1 for both firms, and (2) both firms’ marginal costs are

either cl = 0.75 or ch = 1.25 with equal probability. In the static Cournot equilibrium,

setting (1) yields q = 1
3
, while setting (2) yields qcℓ =

11
24

and qch = 5
24

corresponding to cℓ and

ch, respectively. We choose the action (quantity) set to be na = 15 equally spaced points on

A = [2/15, 29/60] that contains the quantities in the static Cournot equilibrium as interior

points.

The two firms and the authority have discount factor δ = 0.95, learning parameter
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α = 0.05, the greedy index is β = 5×10−6, and the greedy parameter, i.e., the probability of

exploration is ϵt = e−βt. To simplify our analysis by keeping those more essential parameters,

we set both the compliance cost of firms ξf and the penalty to the authority ζa to be zero.

The authority’s auditing cost is ξa = 0.05, its payoff from successfully auditing a collusion

is va ∈ {0.05, 0.1, 0.2} and firm’s loss κf = 0.05 if they are audited to be collusive. The

auditing threshold is θ = 1.0.

In the simulation experiments, we consider two setups: without antitrust authority and

with antitrust authority. In each of the setups, we simulate the game under two cost struc-

tures. In each of the four scenarios above, we vary the authority’s incentive measured by the

benefit-cost ratio va/ξa ∈ {1, 2, 4}. This is motivated by the finding in Proposition 3 that the

outcome of the game relies crucially on the ratio. In all the 12 cases above, we simulate firms’

quantities and payoffs, market price, the authority’s probability of auditing and its payoff,

consumer surplus, and social welfare. For each time period, we simulate the game 1000 times

and present the average of the results across 1000 simulations. Convergence is achieved if an

optimal choice does not change over 105 periods. There is no convergence if an optimal choice

keeps changing up to 108 periods. For quantities and auditing probabilities, we present their

convergence process. In addition, we also illustrate auditing probabilities at convergence for

different cost combinations using heatmaps. For firms’ prices, payoffs, the authority’s payoff,

consumer surplus, and social welfare, we present the results at convergence. Specifically, the

payoff, consumer surplus, and social welfare are their present values.

4 Simulation Results

In this section, we present our baseline results of simulation. The results without an antitrust

authority are in the first subsection and the ones with an antitrust authority are in the second

subsection. In the third section, we present robustness checks of baseline results.

4.1 Without an antitrust authority

In this section, we present the simulation results in the absence of an antitrust authority.

In these simulations, we investigate firms behavior and welfare and their dependence on the

cost structure.

We first present the convergence process of quantities in Figure 1. Subplot (a) illustrates

the scenario where both firms have a constant marginal cost of ci = 1. This subplot shows

that both firms never produce at or above the Cournot equilibrium. They produce relatively

high quantities at the beginning but quickly learn to collaborate and produce less and less.
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The quantity at convergence is 0.274, which is 18% lower than the quantity at the static

Cournot equilibrium of 1/3, but still higher than the monopoly quantity of 0.25. When firms’

costs are random, taking the value cℓ = 0.75 or ch = 1.25 with equal probability, the non-

cooperative game predicts that firms produce qcℓ = 11/24 = 0.458 and qch = 5/24 = 0.208,

respectively, with an average of 0.333. The cooperative game predicts that they produce

0.373 and 0.227, respectively, with an average of 0.3 in the case of colluding. As shown in

subplot (b), the convergence process under random costs differs from that under the fixed

cost. The two firms reduce their quantity first, then increase them gradually. They quickly

learn to collude and produce a quantity of 0.316, which is about 5% lower than the average

quantity in a static Cournot equilibrium and higher the colluding average quantity of 0.3.

A comparison of subplots (a) and (b) shows that when costs are random, it takes longer

for the two firms to coordinate, and the path of convergence also differs, implying that the

randomness of marginal costs is crucial in determining the outcome of algorithmic collusion.

To further explore the dependence of the firms’ learning process on their cost structures,

we provide subplots (c)-(f) in Figure 1. In subplot (c), we collect all the periods where firm

1’s cost is ch = 1.25 (cMax) or cl = 0.75 (cMin) and plot its corresponding quantities. The

higher and lower dashed lines are the static Cournot quantities qcl = 11/24 and qch = 5/24

for costs ch and cl, respectively. Subplot (d) presents the corresponding results for firm 2.

Due to the symmetry of the two firms, subplots (c) and (d) are almost the same. The two

subplots illustrate how firms learn asymmetrically when they receive a draw of higher or

lower marginal cost. The two learning curves converge to 0.430 and 0.204, which are 6% and

2% lower than the corresponding static Cournot equilibrium, and 15% higher and 10% lower

than the colluding equilibrium levels of 0.373 and 0.227, respectively. Overall, the subplots

demonstrate that the simulated results are closer to the static Cournot equilibrium than to

the colluding equilibrium.

In subplots (e)-(f), we illustrate how a firm responds to its opponent’s deviation from

the learning process in the two cost structures. Specifically, focusing on the quantities after

convergence, we let firm 1’s quantity drop by two grid points from its current quantity, and

simulate the quantities for the two firms. From subplot (e), we find that when costs are

fixed, firm 2 responds to firm 1’s cut of quantity by increasing its own quantity. Firm 1

immediately responds in the next period by following firm 2 to produce a similar quantity.

After that, both firms basically produce the same quantity during the process of re-learning

to the quantity at convergence. By comparison, subplot (f) tells a different story. Firm 2’s

quantity rises as a response to the sudden drop of firm 1’s quantity. However, firm 1 does

not produce the same quantity as firm 2 even though its quantity increases, and it takes

five periods before the two quantities align again. It takes more periods for the two firms
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Figure 1: Firm’s quantities without auditing

(a) fixed marginal costs (b) random marginal costs: overall (c) random mc: cost specific # 1

(d) random mc: cost specific # 2 (e) fixed mc: deviation (f) random mc: deviation

to return to the convergence process when costs are random. This pattern arises because it

is easier for firms to learn to cooperate when there is no cost randomness. When costs are

random, it is difficult for a firm to identify whether its rival’s deviation is due to a shock to

cost or non-cooperating deviation. Therefore, a punishment is less likely to be implemented

effectively.

Panel A of Table 1 presents the price, the present value of payoff for the two firms, and

the levels of consumer surplus and social welfare at convergence under the two cost structures

(fixed cost and random costs). The price under the fixed cost case is 6% higher than that

under the random costs because the converged quantity in the former case is smaller as

illustrated in subplots (a)-(b) in Figure 1. Interestingly, the expected payoff is larger when

cost is random. This is because when cost is cℓ the benefit of algorithmic collusion is very

large as the quantity is much lower than Cournot qcl = 11/24, as shown in subplots (c)-(d).

On average, firms are better off in the case of random costs. Not surprisingly, both the

consumer surplus and total surplus are also higher in the case of random costs.
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Table 1: Price, payoff, and welfare at convergence

Payoff Payoff at Cournot Welfare
cost va/ξa price firm 1 firm 2 authority firm 1 firm 2 CS TS

Panel A: without auditing
fixed – 1.452 2.464 2.469 – 2.222 2.222 3.016 7.948
random – 1.368 2.592 2.607 – 2.522 2.537 4.264 9.463

Panel B: with auditing
fixed 1 1.319 2.159 2.158 0.000 2.222 2.222 4.643 8.961
fixed 2 1.332 2.219 2.219 0.000 2.222 2.222 4.457 8.894
fixed 4 1.332 2.217 2.217 0.000 2.222 2.222 4.464 8.898
random 1 1.338 2.526 2.522 0.000 2.547 2.544 4.597 9.646
random 2 1.301 2.394 2.381 0.029 2.540 2.528 5.174 9.978
random 4 1.301 2.337 2.355 0.141 2.524 2.539 5.176 10.008

Notes: All the results are average of last 100 periods after convergence.

4.2 With an antitrust authority

In this subsection, we present the simulation results when an antitrust authority joins

the game. We first report the convergence process of firms’ quantities and the author-

ity’s auditing probability, then discuss the auditing probability at the convergence. For

all the simulations in this section, we consider all five values of ot−1 in the state variable

sa ≡ (q1,t−1, q2,t−1, q1t, q2t, ot−1). The results are similar for all five values, so we only present

the results of ot−1 = 0 for simplicity.

4.2.1 The convergence process of quantity and auditing probability

We first present the convergence process of firms’ quantities and the authority’s auditing

probability in Figure 2, where subplots (a)-(c) are for fixed marginal costs with the author-

ity’s benefit-cost ratio being 1, 2, and 4, respectively. Subplots (d)-(f) are corresponding

results for random marginal costs.

By comparing Figure 2 with Figure 1, even though the initial values are exactly the

same, it is obvious that the authority’s auditing effectively improves the quantity to the

Cournot level or above. The only exception is when marginal costs are random and the

authority’s benefit-cost ratio is 1. An explanation of this exception will be provided later.

When marginal cost is fixed, the authority’s auditing is successful regardless of the incentive

of the authority. The firms first produce below the Cournot quantity and the authority

audits with a beginning probability around 50%. As a response, firms quickly adjust their

quantities above the Cournot quantity, then gradually learn to produce at the Cournot level.

Note that the quantities in subplot (a) do not converge to the Cournot level. A possible

cause is that when the incentive of the authority is low, the initial auditing probability is

relatively lower. Firms do not have enough data to learn about the authority’s auditing rule,

leading them to produce quantities slightly higher than the Cournot level. This is evidenced
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Figure 2: Quantities and auditing probabilities: convergence process

(a) fixed MC, va/ξa = 1 (b) fixed MC, va/ξa = 2 (c) fixed MC, va/ξa = 4

(d) random MC, va/ξa = 1 (e) random MC, va/ξa = 2 (f) random MC, va/ξa = 4

by the fact that it takes longer for the quantity to converge in subplot (a) than in (b) and

(c).

By contrast, when marginal costs are random, the pattern is different. In subplot (d),

the authority’s incentive is low, the auditing is not successful: even though firms increase

quantities as a consequence of the relatively higher auditing probability at the beginning, the

converged quantity is 0.331, still lower than the Cournot level 1/3. As the benefit-cost ratio

increases to 2 and 4, however, the authority’s highest auditing probability increases from

50% significantly to about 80% and 90%, respectively. The firms respond to the auditing

by increasing quantities significantly, which converge to 0.350 and 0.349, respectively—both

of which are higher than the Cournot quantity. As the quantity increases, the authority

subsequently learns to audit with smaller probabilities.

An interesting pattern is that firms fail to learn to produce the Cournot quantity when

the authority’s benefit-cost ratio is 2 or 4. Instead, the quantity at convergence is higher than

Cournot. To further investigate the underlying causes, we plot in Figure 3 the convergence

process of firms’ quantities and the authority’s auditing probabilities when firms’ marginal

costs are cl and ch. Because the two firms are symmetric, the patterns are the same, so we

only present the results for firm 1. It is evidenced from the figure that the authority audits

the low quantity with a higher probability and the higher average quantity at convergence

is mainly due to the larger quantity when firm’s marginal cost is ch.
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This is consistent with the results in Proposition 3: when firm 1 produces the lower

quantity qch, then the two firms may produce (qch, q
c
h) or (q

c
h, q

c
l ) where the quantities (qch, q

c
h)

will be audited with a positive probability. On the other hand, if firm 1 produce the higher

quantity qcl , then two firms may produce (qcl , q
c
h) or (q

c
l , q

c
l ) and there will be no auditing at

the equilibrium. Overall, the low quantity is audited and the high quantity is not at the

equilibrium. The authority learns in that direction, even though the auditing probability

for cl is still greater than zero after the convergence. As a result of the authority’s auditing

behavior, firms produce at much higher level than qch when the cost is ch, while producing

slightly higher than qcl when the cost is cl. The figure also reveals that a larger incentive of

the authority leads to a larger difference of auditing probabilities for low and high quantities.

In summary, the results in the Figure demonstrate that the behavior of firms is mainly

consistent with the equilibrium at which firms communicate to cooperate.

Figure 3: Quantities and auditing probabilities: cost specific

(a) firm 1, va/ξa = 1 (b) firm 1, va/ξa = 2 (c) firm 1, va/ξa = 4

4.2.2 Auditing behavior at convergence

We present the antitrust authority’s auditing behavior at convergence using heatmaps in Fig-

ure 4. The heatmaps illustrate the antitrust authority’s policy function at convergence, i.e.,

the dependence of the auditing decision on the state variable sa ≡ (q1t, q2t, q1,t−1, q2,t−1, ot−1).

Let the antitrust authority’s auditing decision conditional on the state variable at conver-

gence is d(i, j, k, l) ∈ {0, 1}, where i, j, k, l ∈ {1, 2, · · · , 15} are the i-th,j-th, k-th, and l-th

grid points on the quantity support A; the state variable ot−1 = 0 is dropped for simplicity.

d(i, j, k, l) can be computed using the learned Q-matrix at convergence. To get the auditing

decision conditional on the quantities at the current period, i.e., d(i, j), we use a weighted

average over all the possible values of (k, l), i.e., the quantities of the previous period, as

follows.

wijkl =

∑
t 1{q1t = i, q2t = j, q1,t−1 = k, q2,t−1 = l, ot−1 = 0}∑

t 1{q1t = i, q2t = j, ot−1 = 0}
, (25)
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Figure 4: Auditing probabilities at convergence

(a) fixed MC, va/ξa = 1 (b) fixed MC, va/ξa = 2 (c) fixed MC, va/ξa = 4

(d) random MC, va/ξa = 1 (e) random MC, va/ξa = 2 (f) random MC, va/ξa = 4
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where the summation is over all the history of convergence process. The auditing decision

conditional on firms’ quantity (i, j) is

d(i, j) =
∑
k,l

wijkld(i, j, k, l). (26)

Note that the auditing decision d(i, j, k, l) ∈ {0, 1}, the value d(i, j) ∈ [0, 1] measures the

probability of auditing by the authority when the quantities are the (i, j)-th grid point.

In Figure 4, we plot d(i, j) for i, j ∈ {1, 2, · · · , 15}, where we transfer (i, j)-th grid point

to quantity values on A. The first row shows heatmaps for the fixed-cost setting at three

benefit–cost ratios, va/ξa ∈ {1, 2, 4}. The second row reports results for the random cost

setting. The first observation from the figure is that the auditing behavior depends crucially

on the authority’s incentives under both cost structures. Under both cost structures, auditing

probability is zero when the authority’s benefit equals its cost (va/ξa = 1). Increasing the

benefit–cost ratio from one to two leads to a significant change in auditing behavior; however,

a further increase from two to four yields only minor additional changes.

Under the fixed marginal costs, when va/ξa > 1 the auditing probability is close to zero

when both firms’ quantities are higher than the Cournot quantity, which is qc = 1/3 (the

boundary cell of cold and warm colors is (1/3, 1/3)), and the auditing probability is one

whenever one of the firm produces more than 1/3. Such an auditing pattern is consistent

with the results in Proposition 1—the authority does not audit when both firms produces

at least qc. Otherwise, the authority audits with probability one. It worth noting that when

one of the firms produce at the Cournot quantity, the auditing probabilities slightly deviate

from the pattern above. For instance, when firm 1 produces at the Cournot quantity, the

auditing probabilities are slightly smaller than 1 and larger than 0, respectively, if firm 2

produces less than and more than the Cournot quantity. The pattern becomes more evident

as the authority’s incentive increases from 2 to 4. This reveals that at the convergence, the

authority only partially implements the auditing strategy described in Proposition 1 when

one of the firms produce just at the Cournot quantity, indicating that the learning process

of the authority is difficult in presence of a quantity at the boundary.

Next, we discuss the auditing pattern under the random cost structure. In subplot (e),

there are four larger cells with blue color, meaning no auditing. In each of those four larger

cells, the most left-bottom small cell represents an equilibrium point discussed in Proposition

3. The two at the top from left to right are (qch, q
c
l ) and (qcl , q

c
l ). The other two at the bottom

from left the right are (qch, q
c
h) and (qcl , q

c
h). This subplot illustrates that the authority does

not audit at those equilibrium quantities, and also when both firms produce slightly more

than the equilibrium. In subplot (f), however, the authority audits in three of the above
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four larger cells, except the one (qcl , q
c
l ). Recall Proposition 3 states that at the equilibrium

with contact between two firms, the authority will never audit at the quantity (qcl , q
c
l ), and

audit with a positive probability at the quantity (qch, q
c
h). These predictions are consistent

with subplot (f).

At the other two larger cells presented by (qch, q
c
l ) and (qcl , q

c
h), Proposition 3 predicts no

auditing at the equilibrium. However, subplot (f) shows that when the authority’s incentive

is strong enough, the auditing probability at those quantities can be positive, even though

the probability is small than at (qch, q
c
h).

The figure also illustrates that on the 45◦ line from the cell (qch, q
c
h) (the left-bottom cell)

to (qcl , q
c
l ) (the right-upper cell), the auditing probability increases from about 10% to 100%.

Especially, for all those right-upper cells of the Cournot equilibrium under the fixed marginal

cost (1/3, 1/3), the auditing probability reaches 1 very quickly. The rationale behind such

an auditing pattern is that those quantities along the 45◦ are likely produced by firms with

cost (cl, cl) and the likelihood is higher as the quantities move to the right-upper direction.

Thus, the authority learns to audit with higher probability in that direction. Similarly, when

we move from (qch, q
c
h) to the right to (qch, q

c
l ) and to above to (qcl , q

c
h), the cells on the path

can be collusive outcomes for the cost (ch, cl) and (cl, ch), respectively, and the authority

audits with an increasing probabilities along those two directions.

To summarize, the auditing behavior at the convergence is largely consistent with the

theoretical model with firms’ communication. With higher incentives, the authority was able

to audit effectively when firms produce off-equilibrium quantities with positive probability.

4.2.3 Deviation

To test effectiveness of the authority’s auditing, we arbitrarily impose perturbations to firm

1’s quantity after convergence and simulate the response of the authority. The results are

summarized in Figure 5. As in previous figures, the three subplots in the upper row are for

fixed marginal cost and the ones in the bottom row are for random marginal costs.

In each subplot, at the beginning, the quantities of the two firms and the auditing prob-

abilities are at convergence. The auditing probability is stable at the minimum. We perturb

firm 1’s quantity by letting it drop two grid points in period six.5 From the subplots, we

observe that the authority responds promptly by increasing the auditing probability from

the minimum to above 75%. As a result, firm 1 immediately increases its quantity to a level

higher than its pre-perturbation quantity, and then quickly adjusts the quantity to the level

before the perturbation in the eighth period. The authority, at the same time, decreases its

auditing probability significantly to the level before the perturbation in the tenth period.

5The period here is relative after convergence.
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Figure 5: Quantities and auditing probabilities: Deviation

(a) fixed MC, va/ξa = 1 (b) fixed MC, va/ξa = 2 (c) fixed MC, va/ξa = 4

(d) random MC, va/ξa = 1 (e) random MC, va/ξa = 2 (f) random MC, va/ξa = 4

The subplots also illustrate that the response of the authority to firm’s sudden quantity

drop does not rely on the authority’s incentive much. When the authority’s incentive ratio

va/ξa is 2 and 4, the highest auditing probability in period six is slight higher than that

when the ratio is 1, in both cost structures.

Note that our deviation analysis is different from those in Calvano et al. (2020b), where

firms are perturbed to the direction non-collusive outcomes, i.e., higher prices, and simula-

tions are conducted to test whether firms can go back to the collusive behavior. By contrast,

our perturbation pushes the firm toward a more collusive direction, and the purpose is to

test whether the authority can respond to the change by increasing the auditing probability.

Our simulation results in Figure 5 demonstrate that the authority successfully captures the

sudden change and push the quantities back to the level at convergence by immediately

increasing the auditing probability.

4.3 Robustness

In this section, we check robustness of our results to the baseline simulation settings. We

make two changes to our baseline setting. First, the authority’s auditing threshold θ is

lowered from θ = 1 to θ = 10/11, i.e., the authority audits when a firm’s quantity is below

10/11 of the Cournot quantity—a less strict auditing rule. Second, we allow asymmetric
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learing between firms and the authority by setting the authority’s learning parameters (α, β)

to be half of those of the two firms. We find that our simulations results are robust to these

variations.

In Figures 6-7, we present the simulation results for a lower auditing threshold (θ =

10/11). The convergence process of quantities and auditing probabilities in Figure 6 displays

a similar pattern to our baseline results. The only difference is that when marginal cost is

fixed, the converged quantities are about 0.30, lower than the threshold θ. This is consistent

with Proposition 1 where θqc = (10/11)× (1/3) = 0.3 is an equilibrium quantity. Similarly,

the auditing probabilities at convergence illustrated in the upper panel of Figure 7 follow

the same pattern as in our baseline results, with the only difference being the boundary cell

is (0.3, 0.3). The authority audits with probability 1 whenever any firm’s quantity is greater

than 0.3. The results show that even though the authority’s auditing is effective, firms learn

to produce less when the auditing is less strict.

For the random marginal costs, the results in Figures 6 are also similar to the baseline

simulations, with the quantities at convergence slightly lower due to the less strict auditing

rule: in subplots (e) and (f), the quantities at convergence are 0.343 and 0.342, respectively,

while the numbers are 0.350 and 0.349 in the baseline results. In Figure 7, the four cells

indicating static equilibrium quantities are (qch, q
c
h), (θq

c
l , q

c
h), (q

c
h, θq

c
l ), and (θqcl , θq

c
l ); that is,

the authority lowers the audited quantity threshold to θqcl for the cost cl while the quantity

under ch does not change.

Figure 6: Lower threshold: Convergence process of quantities and auditing probabilities

(a) fixed MC, va/ξa = 1 (b) fixed MC, va/ξa = 2 (c) fixed MC, va/ξa = 4

(d) random MC, va/ξa = 1 (e) random MC, va/ξa = 2 (f) random MC, va/ξa = 4
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Figure 7: Lower threshold: Auditing probabilities at convergence

(a) fixed MC, va/ξa = 1 (b) fixed MC, va/ξa = 2 (c) fixed MC, va/ξa = 4

(d) random MC, va/ξa = 1 (e) random MC, va/ξa = 2 (f) random MC, va/ξa = 4

In the asymmetric learning setting, the authority’s learning parameters are set to be

α = 0.025, β = 2.5× 10−6, while the firms’ parameters are α = 0.05, β = 5× 10−6 as in our

baseline setting. Figures 8-9 summarize the simulation results for the asymmetric learning

setting. The results are nearly identical to the baseline ones. The only difference is that

when the marginal costs are random, it takes slightly more periods for the authority. This

is demonstrated by the observation that the auditing probability in the asymmetric case is

smaller than in the baseline case for a given time period. Nevertheless, the asymmetry of

learning between the authority and firms does not affect the outcome: the authority audits

effectively as in the baseline simulations.

5 Alternative models

In this section, we change the model setup for our simulations to investigate whether the

authority’s auditing remains effective in alternative models. Specifically, we first replace

the Q-learning algorithm with the Actor-Critic algorithm to check the independence of our

baseline results from the specific algorithm used. Next, considering that in some markets

28



Figure 8: Asymmetric learning: Convergence process of quantities and auditing probabilities

(a) fixed MC, va/ξa = 1 (b) fixed MC, va/ξa = 2 (c) fixed MC, va/ξa = 4

(d) random MC, va/ξa = 1 (e) random MC, va/ξa = 2 (f) random MC, va/ξa = 4

Figure 9: Asymmetric learning: Auditing probabilities at convergence

(a) fixed MC, va/ξa = 1 (b) fixed MC, va/ξa = 2 (c) fixed MC, va/ξa = 4

(d) random MC, va/ξa = 1 (e) random MC, va/ξa = 2 (f) random MC, va/ξa = 4
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only price, but not quantity, can be audited, we modify the model such that the authority

audits price rather than quantity.

5.1 Actor-Critic

In this section, we discuss the Actor-Critic algorithm and the simulation results obtained

from this algorithm. As another popular reinforcement learning algorithm, Actor–Critic

differs from Q-learning because it combines both value learning as Q-learning and policy

learning. The algorithm consists of two components: the actor, which learns a policy (how

to act, i.e., what action to take in each state), and the critic, which evaluates the actor’s

actions by estimating the value function (how good a state or action is). The critic provides

feedback to the actor to improve its policy.

5.1.1 The algorithm

As we discussed before, Q-learning is a value-based method — it learns the action-value

function Q(s, a) directly and chooses the action with the highest Q-value. By contrast,

Actor–Critic is a hybrid policy/value method — it explicitly learns a policy (actor) guided

by a value estimate (critic). Q-learning uses discrete action selection via argmax, while

Actor–Critic can handle continuous actions more easily and tends to learn smoother policies.

In our simulations, the authority’s decision given a state variable sa in a binary decision in

d ∈ {0, 1} if Q-learning is employed, and the decision is a probability in [0, 1] if Actor-Critic

is employed. In other words, the players using Actor-Critic can use a mixed strategy to

audit while only a pure strategy is possible with Q-learning. We check whether the use of

Actor-Critic algorithm by the firms and the authority changes our baseline results.

We first present the details of Actor-Critic for a single agent. The MDP is the same

as discussed in Q-learning. In each period t, a firm selects an action at = a ∈ A in state

st = s ∈ S according to a stochastic policy π(a|s,λ) ≡ Pr(at = a|st = s,λ) where λ ∈
R

d, d = |A| × |S| is the policy’s parameter vector. As in Q-learning, we maintain that both

the state variable s and the action a are discrete. We choose a widely used exponential

soft-max distribution for π(a|s,λ)

π(a|s,λ) = exp (h(s, a,λ))∑
a′∈A exp (h(s, a′,λ))

, (27)

where h(s, a,λ) ∈ R is called the numerical preferences for each state-action pair (s, a). The

actions with the highest preferences in each state are given the highest probabilities of being
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selected. We choose h(s, a,λ) to be linear in λ

h(s, a,λ) = λ · x(s, a), (28)

where x(s, a) is a vector of length |A| × |S|. Its elements are 1 for the state-action pair

(s, a) and 0 for all other state-action pairs (s′, a′) with s ̸= s′ or a ̸= a′. For example,

if s ∈ {s1, s2}, a ∈ {a1, a2}, then x = [x(s1, a1) x(s1, a2) x(s2, a1) x(s2, a2)]
′. Let λ =

[λ1 λ2 λ3 λ4]
′. Then

h(s1, a1,λ) = [λ1 λ2 λ3 λ4] · [1 0 0 0]′ = λ1. (29)

The Actor-Critic algorithm learns the policy π(a|s,λ) by learning λ through a critic and

an actor. The critic evaluates the actions through a temporal-difference (TD) update rule

similar to that in using the following equation

Q(st+1, at+1) = (1− α)Q(st, at) + α

(
rt +

∑
a∈A

πt(a|st+1,λt)Q(st+1, a)

)
, (30)

where the Q-function is defined as in Q-learning, rt is the reward in t, and α is the learning

rate as defined in Q-learning. Note that in Q-learning, the second term on the right-hand-

side is maxa∈AQ(st+1, a), yielding a binary action, i.e., a pure strategy. Here, however, the

softmax policy induces a probability of action on [0, 1], i.e., a mixed strategy. Consequently,

no separate ε-greedy exploration is required.

Next, the actor updates the policy parameters λ in the direction of the policy gradient,

using the advantage defined as the difference between the realized and expected value of an

action:

A(st, at) = Q(st, at)−
∑

a∈A
πt(a; st,λ)Q(st, a). (31)

The policy parameters λ are then updated according to the updating rule

λt+1 = λt + αA(st, at)∇ log πt(at|st,λt). (32)

Specifically, for the softmax policy function, the gradients are defined as

∇ log πt(a; st,λ) =

1− πt(a|st,λ), if a = at,

−πt(a|st,λ), otherwise.
(33)

To set up the simulations, both firms and the antitrust authority adopt the Actor-Critic
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algorithm. The MARL approach adopted in Q-learning is also employed for Actor-Critic.

All the details of the auditing game are the same as presented in Section 3.2. All the

parameters are set to the same values as in our baseline simulations.

5.1.2 Simulation results

We simulate the game using Actor-Critic and present the convergence process of firms’

quantities and the authority’s auditing probability in Figure 10. Under both cost structures,

the pattern of quantity and probability is similar to the baseline results: auditing is effective

in lowering firms’ quantities and the effectiveness increases with the authority’s incentive.

There are several differences between the results in Figure 10 and the baseline results.

First, the auditing using Actor-Critic is more effective than using Q-learning. The highest

auditing probability in the former case is much smaller than that in the latter case. For

example, in subplot (f) of Figure 10, the highest auditing probability is about 75% while

the corresponding probability is 90% in Figure 2. Moreover, when the marginal cost is

fixed and the benefit-cost ratio va/ξa is 1, the quantities converge to the Cournot quantity

using Actor-Critic, while the converged quantity is larger than the Cournot quantity using

Q-learning. Similarly, when the costs are random, the converged quantities are above the

Cournot quantity using Actor-Critic while they are below the Cournot quantity using Q-

learning. The reason why the two algorithms lead to quantitatively different results is that

the Actor-Critic algorithm can audit with any probability between 0 and 1, depending on

the quantities. The Q-learning algorithm, however, can only audit with probability 1 or 0,

i.e., leading to over-auditing or under-auditing.

This is evidenced by the heatmaps of auditing probabilities at convergence in Figure 11.

It is evident that when the marginal cost is fixed, the authority effectively learned not to

audit when the quantity is at the Cournot equilibrium (qc, qc) (the blue cell in the center).

Different from Q-learning, the authority using Actor-Critic audits with positive probabilities

when both firms’ quantities are higher than qc and audits with probabilities less than 1

if any firm’s quantity is lower than qc. The difference implies that Actor-Critic, relative

to Q-learning, over-audits and under-audits less severely when firms’ quantities are higher

and lower, respectively, than the equilibrium. As the authority’s benefit-cost ratio va/ξa

increases, the auditing probabilities move toward those using Q-learning, i.e, the auditing

probabilities are smaller when both firms’ quantities are higher than the Cournot, while they

are larger when any firm’s quantity is lower than the Cournot.

When the marginal costs are random, the authority is able to identify the equilibrium cells

(qch, q
c
l ), (q

c
l , q

c
l ), (q

c
h, q

c
h), and (qcl , q

c
h) and audits with a similar pattern to the baseline case. By

comparing Figure 11 with Figure 4, we find that (1) the auditing is more effective when using
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Figure 10: Actor-Critic: Convergence process of quantities and auditing probabilities

(a) fixed MC, va/ξa = 1 (b) fixed MC, va/ξa = 2 (c) fixed MC, va/ξa = 4

(d) random MC, va/ξa = 1 (e) random MC, va/ξa = 2 (f) random MC, va/ξa = 4

Actor-Critic than Q-learning when the authority’s incentive is not strong (va/ξa = 1). Recall

that the authority does not audit at all in the baseline case. When the incentive is stronger,

the authority audits with probabilities less than 1 in those cells with potential collusion by

using Actor-Critic, while the probabilities are 1 in the baseline case. Nevertheless, as the

benefit-cost ratio va/ξa increases from 2 to 4, the auditing pattern moves toward that in the

baseline case.

5.2 Price auditing

In some markets, the antitrust authority and a rival firm may observe only prices rather than

firms’ individual quantities. To capture such environments, we modify our baseline model

to incorporate price-based auditing while maintaining quantity competition between firms.

In this modified setting, firms still compete for quantity. However, each firm can only

observe the market price in the previous period and the authority’s previous auditing de-

cision; it cannot observe its rival’s quantity choice. Thus, a firm’s state variable becomes

sf = (pt−1, ot−1). The authority, on the other hand, can observe the current and previous

market price, as well as its own auditing decision in the previous period. Its state variable is

therefore sa = (pt−1, pt, ot−1), where the market prices is determined by pt = b− a(q1t + q2t).

With these redefined state variables, the MARL learning procedure follows the same struc-
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Figure 11: Actor-Critic: Auditing probabilities at convergence

(a) fixed MC, va/ξa = 1 (b) fixed MC, va/ξa = 2 (c) fixed MC, va/ξa = 4

(d) random MC, va/ξa = 1 (e) random MC, va/ξa = 2 (f) random MC, va/ξa = 4
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ture as in Section 3.2. The primary adjustment is simply replacing individual quantity

observations with prices in the information set.

Figure 12: Price: Convergence process of quantities and auditing probabilities

(a) fixed MC, va/ξa = 1 (b) fixed MC, va/ξa = 2 (c) fixed MC, va/ξa = 4

(d) random MC, va/ξa = 1 (e) random MC, va/ξa = 2 (f) random MC, va/ξa = 4

Figure 12 reports the convergence process of firms’ quantity and the authority’s auditing

probability under price-based auditing. A key difference from the baseline quantity-auditing

model is that the authority chooses higher auditing probabilities in the early states of learn-

ing. This results in substantially faster convergence of firms’ quantities to their long-run

levels. The stronger early auditing response arises because market price is a more aggre-

gated signal than the pair of quantities. Under quantity observability, many deviations in

(q1, q2) may map into distinct states for the authority. The authority may audit only some

of these states with high probability and ignore others. Under price observability, however,

all quantity pairs that produce the same price collapse into a single state for the author-

ity. Even if only some quantity combinations are collusive, the authority cannot distinguish

among them. As a result, the authority tends to assign uniformly high auditing probability

to that price level. This heightened auditing pressure forces firms to adjust quantities quickly

toward the equilibrium path, significantly accelerating convergence relative to the baseline

model.

To summarize, the price-based auditing environment preserves the core qualitative find-

ings of the baseline model: the antitrust authority successfully disciplines firms and prevents

collusion. The main difference is that price observability leads to faster learning and sharper
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early enforcement. This suggests that, in markets where only price data are available, effec-

tive antitrust enforcement is still feasible—and may even be more forceful during the early

phases of learning.

6 Concluding Remarks

This research sheds light on antitrust practice in presence of algorithmic collusion due to

algorithmic pricing of competing firms. Assuming an antitrust authority also employs algo-

rithms to monitor firms and detect their possible collusive behavior, we show by simulation

experiments that the effectiveness of the algorithmic authority in detecting collision relies

on information structure of firms as well as the authority’s incentive and firms’ costs of

collusion. No matter whether firms’ marginal costs are fixed or random, even such informa-

tion is private, the authority can successfully prohibit firm’s collusion and greatly improve

consumer surplus. Moreover, outcomes under the random cost structure are more favorable

than those under the fixed cost structure. The simulation results are robust to learning

algorithm, alternative state variable, auditing threshold, and symmetric learning parameters

between the authority and firms.

Our study provides the first piece of evidence on detecting collusion using algorithms.

It identifies those important factors that affects the effectiveness of algorithmic detection.

A natural direction for future research is to translate the conceptual detection framework

into empirical tools that can be deployed in real markets. One promising avenue is to apply

algorithmic-detection methods to high-frequency retail pricing data, where the prevalence

of automated pricing makes markets particularly susceptible to algorithmic coordination.

Researchers could also test reinforcement-learning–based detection procedures in online en-

vironments such as travel platforms, e-commerce retailers, or food-delivery marketplaces,

where rich data and rapid price adjustments create ideal settings for algorithmic experimen-

tation.
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Appendix
In this appendix, we provide some details of the proof for Proposition 3.

We assume that firms collude only if both firms get positive profit from colluding. Assume

ci takes two values ch and cl, ch > cl.

1. When two firms’ costs are (cl, cl). All the possible quantities are (1) Cournot qcl =
2b+c−3cl

6a
; (2) Collusion #1: qi = θqcl ; (3) Cournot (cl, ch): q = (qcl , q

c
h) ≡ (2b+c−3cl

6a
, 2b+c−3ch

6a
);

(4) Cournot (cl, ch): q = (qch, q
c
l ); (5) q = (θqcl , θq

c
h); (6) q(θqch, θq

c
l ) (7) Cournot

q = (qch, q
c
h); (8) q = (θqch, θq

c
h).

If θ is sufficiently close to 1, the only possible outcomes are (1),(2), (7), and (8). If they

choose to collude, then choice (2) is better than (1). We compare (2) with (7) and (8) to

obtain the monitoring probability. In this case, two firms are symmetric.

(b− 2aθqch − cl) θq
c
h −m (θqch, θq

c
h)κ = (b− 2aθqcl − cl) θq

c
l ,

(b− 2aqch − cl) q
c
h −m (qch, q

c
h)κ = (b− 2aθqcl − cl) θq

c
l .

The monitoring probabilities are

m (θqch, θq
c
h) =

(b− 2aθqch − cl) θq
c
h − (b− 2aθqcl − cl) θq

c
l

κ
, (.34)

m (qch, q
c
h) =

(b− 2aqch − cl) q
c
h − (b− 2aθqcl − cl) θq

c
l

κ
. (.35)

When costs are (cl, ch), all possible quantities are (1) (qcl , q
c
h); (2) (θq

c
l , θq

c
h); (3) (q

c
h, q

c
h); (4)

(θqch, θq
c
h).

firm with cl : (b− 2aqch − cl) q
c
h −m (qch, q

c
h)κ = (b− aθqcl − aθqch − cl) θq

c
l , (.36)

firm with ch : (b− 2aqch − ch) q
c
h −m (qch, q

c
h)κ = (b− aθqcl − aθqch − ch) θq

c
h. (.37)

Take difference between two equations in Eq.(.36)

−a(qch)
2θ2 + a(qcl )

2θ2 + bqchθ − bqcl θ − chq
c
hθ + chq

c
h − clq

c
h + clq

c
l θ

When θ = 1, the difference is

−a(qch)
2 + a(qcl )

2 + bqch − bqcl − clq
c
h + clq

c
l

= −a
[
(qch − qcl )(q

c
h + qcl )

]
+ (b− cl)(q

c
h − qcl )

= (qch − qcl )
[
b− cl − a(qch + qcl )

]
> 0, (.38)
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which implies that the two equations above cannot hold simultaneously. When θ is close

to one, no deviation. Only (1) and (2) are possible outcomes. When costs are (ch, cl), the

results are the same.

When costs are (ch, ch), the possible quantities are (3) and (4) above.

To sum up,

• If cost are (cl, cl), firms produce (qcl , q
c
l ) if none of the firms contacts the other firm for

collusion. If one of the firms contacts the other, they produce (θqcl , θq
c
l ), (q

c
h, q

c
h) and

(θqch, θq
c
h), which yield the same profit.

• If costs are (ch, cl), firms produce (qch, q
c
l ) if collusion is not successful. If collusion is

successful, they produce (θqch, θq
c
l ). If costs are (cl, ch), the results are similar.

• If costs are (ch, ch), they produce (qch, q
c
h) when collusion fails and produce (θqch, θq

c
h).
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