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Abstract

Pricing algorithms, particularly reinforcement learning algorithms, have been in-
creasingly used by firms in competitive markets, helping them capture more informa-
tion about the market and their rivals. While prior work has shown that reinforcement
learning algorithms can lead to supracompetitive prices in the absence of communica-
tion between firms, existing studies largely assume simultaneous adoption by competing
firms. Within a framework of price competition between two firms both initially using
rule-based strategies, we provide theoretical and simulation evidence that the prices
of both firms weakly increase when one firm adopts an algorithm. We also find that
the firm using a rule can “free ride” and benefit more from the other firm’s adop-
tion. Our findings contribute to the literature by highlighting the importance of the
order of algorithm adoption and the transition from rule-based strategies to learning-
based algorithms, and demonstrate how tacit collusion can occur in a broader set of

circumstances.
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1 Introduction

Pricing algorithms have been increasingly adopted to price goods and services in competitive
markets in recent years. Automated software enables firms to adjust prices in real time in
response to changes in the market environment and rivals” actions. More recently, reinforce-
ment learning algorithms have been developed and applied to repeated pricing decisions,
equipping firms with the ability to learn and extract information about market demand
and their competitors’ pricing strategies. These learning algorithms facilitate the dynamic
updating of both prices and pricing policies.

However, recent empirical and simulation studies have indicated that such learning al-
gorithms may learn to set and sustain supracompetitive prices — prices that are above the
competitive level — in the absence of explicit coordination. Due to the fact that such al-
gorithms are not designed to be collusive and do not communicate with each other, current
antitrust policy may be insufficient to regulate this form of tacit collusion.

A crucial question related to algorithmic pricing, which has implications for antitrust
regulation and remains understudied, concerns the timing of algorithmic adoption. In prac-
tice, firms may not adopt pricing algorithms simultaneously. Without direct communication,
firms are unable to adopt pricing algorithms at the same time and, to the best of our knowl-
edge, current computational techniques do not allow firms to perfectly discern the type of
algorithm their rivals are employing. This raises the question of whether supracompetitive
prices will still arise when firms adopt pricing algorithms at different times, as compared
to the case when both adopt simultaneously. If the emergence of supracompetitive prices
is prevented by sequential adoption, current regulation may be able to address this issue
effectively; otherwise, the concern for tacit collusion persists.

This paper examines the outcomes in markets where firms adopt pricing algorithms at
different times. We first develop a theoretical model to predict the interactions between pric-
ing algorithms and subsequently introduce @)-learning, a widely used reinforcement learning

algorithm, to simulate firms’ pricing in practice. The results indicate that market prices



weakly increase after the first algorithm is adopted and supracompetitive prices still arise
even when firms adopt pricing algorithms sequentially. This finding suggests that current
regulations may be inadequate to prevent such tacit collusion, even when firms are unable to
adopt algorithms simultaneously. Moreover, we demonstrate that explicit collusion, where
firms share profits, leads to an even higher price level.

We begin by developing an economic model to derive theoretical predictions, focusing
on a duopoly market in which firms have limited information about their rivals and the
market. For instance, many third-party sellers on platforms such as Amazon typically lack
detailed knowledge about other sellers offering similar products; similarly, gasoline stations
may not fully capture the market environment or their rivals’ strategies. In the absence of
learning algorithms, such firms tend to rely on simple rule-based strategies, such as platform
presets or endogenous rules with limited information of the market.! Traditional competing
strategies that are widely used, such as price trigger and grim trigger, can also be considered
simple rules, as they are implemented as functions of a rival’s price.

We demonstrate that for a broad class of simple rules, prices for both firms weakly
increase after one adopts a learning algorithm. A simple rule is defined as a function of
the rival’s price, and is assumed to be: (1) weakly increasing — so that if one firm raises
its price, the rival will not lower its own; (2) weakly below the rival’s price — reflecting
competitive behavior. The dynamic optimal price for a firm facing a rule-based rival in a
repeated simultaneous game is equivalent to the static optimal price in a sequential game
where the rule-based rival moves later, as long as the discount factor is sufficiently large.
This result holds regardless of the specific structure of the learning algorithm, as long as the
algorithm can learn market demand and the rival’s strategy and achieves convergence. If a

firm is able to completely learn its rival’s rule, market prices will not decrease.

'For the purpose of this paper, we draw a distinction between a rule and an algorithm. A rule refers
to a static, rule-based pricing strategy, while an algorithm refers to a learning-based algorithm, such as
reinforcement learning. Although rule-based strategies are sometimes referred to as “rule-based algorithms”
in the literature, we use “rule” to denote these cases and reserve “algorithm” for learning-based strategies
throughout this paper.



Our analysis also reveals that the firm using a rule-based strategy may earn higher profits
than one employing learning algorithms when competing against each other. However, if
neither firm uses an algorithm, their prices will be lower so that both are worse off. Although
the equilibrium outcome when both firms use algorithms is undetermined, one can infer that
if their profits in this case are lower than in the rule-versus-algorithm scenario, the algorithm
adoption game resembles a chicken game with a mixed strategy equilibrium. Therefore, a
firm may prefer to continue using a rule if it believes its rival is highly likely to adopt an
algorithm, while adoption is preferable if algorithm use by rivals is perceived as unlikely.

The results could also be extended to markets with asymmetric or multiple firms. In
markets where there is a price leader and follower firms employing simple rules, the resulting
market price corresponds to the outcome where the same leader competes with a represen-
tative firm that aggregates all other firms. Such leadership is evident in settings such as the
Amazon buy box and gasoline station markets as discussed in Byrne and De Roos (2019).
For asymmetric firms, a linear transformation exists between price spaces, so our baseline
results continue to apply.

We then provide simulation evidence using Q-learning. ()-learning is designed for Markov
decision processes with finite state and action spaces. In a single-agent problem described in
our model, the Markov process is stationary and convergence is maintained. ()-learning also
links perfectly with the framework of dynamic programming in economics, which provides a
natural economic interpretation. It departs from traditional methods, such as value function
iteration (VFI) and policy function iteration (PFI), by not requiring full information and
permitting policy updates during the learning process.

Simulation results are consistent with our theoretical predictions. We examine four com-
monly observed rule-based strategies: myopic, undercut, trigger, and ceiling. Adoption of
an algorithm by the first firm leads to a weakly increase in prices. If the second firm also
adopts, however, the price change becomes ambiguous, while we observe supracompetitive

prices. We also extend the time periods to allow the firm that adopts the algorithm later to



revert to use a rule, and the prices converge to the same steady state as before.

To verify the presence of tacit collusion between an algorithm and a rule, we examine the
potential circumstance in which one firm deviates by taking a myopic action. We find that
firms return to the steady state observed prior to deviation, which ensures the tacit collusion
consistent with our theoretical prediction that the optimal price is a steady state such that
the algorithm has no incentive to deviate. Such tacit collusion requires no communication
between firms, while explicit collusion will raise the price even further. Simulation results
confirm this prediction.

We further investigate the robustness of our findings by varying simulation parameters
and setups. Starting with less patient firms with lower discount factors, we find that for
rules that require higher discount factors, the predicted steady state is no longer observed
and the price is lower as expected, while other rules persist the results. We also show that
in order to achieve the convergence, some algorithms might require careful parameter and
initial value selection.

This paper contributes to three strands of literature. The first is the emerging literature
related to algorithmic collusion. Although early work dates back several decades (Sandholm
and Crites, 1995; Tesauro and Kephart, 2002; Waltman and Kaymak, 2008), more recent
studies have explored algorithmic pricing, focusing on the tacit collusion when algorithms
that start at the same time with simulations (Calvano et al., 2020b; Klein, 2021; Johnson
et al., 2023; Wang et al., 2023) and experiments (Werner, 2024). Results are also extended to
auctions (Banchio and Skrzypacz, 2022) and capital markets (Dou et al., 2025). A noticeable
exception is Assad et al. (2024), which studies the effect of hybrid adoption within a market.
However, their study focuses on the empirical application of all types of automated pricing
software, including both learning algorithms and rule-based strategies. How firms compete
when they adopt algorithms gradually remains largely unexplored in the literature. This
paper is the first to investigate such sequential adoption and demonstrate that algorithms

lead to not only high prices but also price increase in the non-simultaneous adoption setups.



This paper also contributes to the flourishing literature of rule-based strategies. Chen
and Tsai (2024), Chen et al. (2016) and Musolff (2024) study automated pricing software
on platforms like Amazon. Theoretical work has further examined other characteristics that
could lead to tacit and explicit collusion with endogenous rule-based strategies (Salcedo,
2015; Miklos-Thal and Tucker, 2019; Pai and Hansen, 2020; Lamba and Zhuk, 2022; Peiseler
et al., 2022; Brown and MacKay, 2023). The only paper that discusses the competition
between algorithms and rules is Wang et al. (2023), which compares rule-algorithm versus
algorithm-algorithm in a counterfactual, static setting and considers a limited selection of
rules. However, their analysis does not address the dynamic process of sequential algorithm
adoption, nor does it systematically examine the properties of rule-based strategies. This
paper fills this gap by investigating how reinforcement learning algorithms compete with
rule-based rivals across a broad class of rules, and demonstrates that such interactions can
lead to increases in market prices.

The third strand of literature concerns the regulatory implications of algorithmic collu-
sion. A key prerequisite for designing effective policy interventions is to understand different
market scenarios in which supracompetitive pricing may arise. While previous studies dis-
cuss the cases where algorithms fail to converge to supracompetitive prices (Asker et al.,
2024; Possnig, 2023; Bichler et al., 2024) and propose potential regulations (Harrington,
2018; Calvano et al., 2020a; MacKay and Weinstein, 2022; Leslie, 2023; Johnson et al., 2023;
Spann et al., 2025), the literature has largely overlooked the sequential and hybrid adoption
of pricing algorithms. By analyzing the pricing effects resulting from sequential adoption
and competition with rule-based rivals, this paper establishes a foundation for further re-
search on the assessment and development of effective regulatory policies in markets where
algorithms are increasingly prevalent.

The outline of the remaining paper is as follows. Section 2 presents a model to describe
competition between firms and theoretical evidence on how algorithms respond to rules.

Section 3 summarizes ()-learning, a reinforcement learning method. Section 4 discusses the



simulation results. Section 5 extends the results, and Section 6 concludes.

2 Economic Model

In this section, we develop an economic model to derive theoretical predictions. We focus
on a duopoly market in which firms have limited information about both their rivals and
the market environment. We first introduce the model setup and key assumptions, and
then analyze the steady state and demonstrate the price increase when the first algorithm
is adopted. Finally, we discuss the adoption game and extend our analysis to markets with

asymmetric or multiple firms.

2.1 Model Setup

We start with the case where no firm uses a reinforcement learning algorithm. Consider
an infinitely repeated incomplete information game in which n = 2 symmetric firms act
simultaneously.” Time periods are indexed discretely by ¢ € {1,2,...}. In each period ¢,

firm ¢ earns a profit
Ti(Pist, Pit) = (it — €) * Git(Pie, i),

where ¢ = 1 is the constant marginal cost, and g; ; is the demand function. Suppose that firms
are not able to respond optimally since they have limited information about their rival and
the market without the help of a learning algorithm. Before time 0, firms were competing
with a simple rule p;; = g;(p;js—1), which is a pure strategy.® At time 0, without loss of
generality, firm 1 adopts a reinforcement learning algorithm. Firm 2 has no information
about this and keeps the same rule until ¢;. We call ¢ < 0 the pre stage, 0 < t < ¢y the

hybrid stage, and t > t5 the post stage. The process is shown in Figure 1.

2We will discuss the market with asymmetric firms in Section 2.2.
3This rule could be exogenous or endogenous.



Figure 1: The timing of firms’ adoption of algorithm

Fim1: Rule ~ RL = RL

Fim2: Rule ~  Rule = RL

pre 0  hybrid t, post

Notes: Rule stands for rule-based strategy. RL stands for reinforcement learning algorithm.

Hybrid stage In the absence of learning algorithms, i.e., in the pre stage, suppose that
the prices firms charged at time 0 are sg = (p1o,p20). When ¢t = 1, firm 1 starts to use a
reinforcement learning algorithm to help it maximize its discounted profit given state variable
being the price of both firms in the last period. Suppose that firm 2 has no information about

this so its policy function is still go. The value function of firm 1 is given by

Vi(s) = max {m (p. 92(5)) + 6V (")}

where state s’ = (p1, p2) and 0 is the discount factor. We can see from the above equation
that if go(p1, p2) = go(p1) then the state variable could be collapsed to 8" = p; = (p1, g2(p1))-
By the contraction mapping theorem, there exists a unique V*(s) that solves the above
equation, and a reinforcement learning algorithm starting with arbitrary V° will converge to

V*. Before digging into the V*, let’s introduce some assumptions first.

Assumption 1. Define pV to be the static Bertrand Nash equilibrium price, and p™ to be

the static monopoly price, i.e.,

pY = arg max m; (p,pN)
p

p™ = arg maxm(p, p)
p

For anyp e P = [pN,pM]



(i). m(p1,pe) is strictly concave.

(ii). ™ (p) = 71 (p,p) is strictly increasing w.r.t. p.
(71). g2(p) < p.

(iv). go(p) is continuous and weakly increasing w.r.t. p.
(v). q1(p1,p2) is weakly increasing w.r.t. po.

The assumptions above are satisfied in most theoretical models. Assumption 1(i). is a
typical assumption that states concave profit function, and Assumption 1(ii). is a weaker
condition of concave monopoly profit. Both apply to most of the commonly used demand
functions. Assumption 1(iii). means that the strategy is “competitive”. It’s usually irrational
to choose a price that is higher than the rival in a steady state if the firm has no information
about its rival’s pricing strategy. Note that this assumption only applies when the firm has
limited information about the rival’s strategy. For example, it would happen that p} > ¢2(p?)
if firm 1 has complete information as shown by results from our simulations. Assumption
1(iv). means that since firms have limited information, it is better to follow the rival and
raise price when their increase. Most rule-based strategies adopted by firms satisfy this
assumption. We will introduce some of them in Section 4. Assumption 1(v). means that

the products are substitutes and therefore there exists competition.
Lemma 1. Under Assumption 1(iii)., there exists a steady state p; = ps = po.

Lemma 1 ensures that there always exists at least one steady state in the pre stage.
Notice that we didn’t assume that the rules used by two firms in the pre stage are the same.
We instead relax the assumption and show that there exists at least one price such that the
two rules interact and are the response to each other. In our assumptions, the price pair

(p",pY) is always a steady state such that p = g, (p").



2.2 Steady state in The Hybrid Stage

In this subsection, we examine the steady state in the hybrid stage. Let ¢* be an optimal

policy such that

g9'(s) € arg max {m(p, g2(s)) + 0V (s")}

We can see that a steady state is when s = s = ¢g*(s) = p}. In other words, the steady state

is the fixed point of the function g*.

Proposition 1. Let p* be the static optimal price of firm 1 given firm 2’s strategy g2, such

that

p" = argmaxm (Z% g2 (p))
p

Then there always exists a 0y € [0,1) such that V5 € (8o, 1), p* is the unique fized point of

*

g*, i.e., pj = p* is the unique steady state.

Proposition 1 links the static optimal price with the dynamic optimal price. It ensures
that when ¢ is large enough, the dynamic optimal price coincides with the static optimal
price p*.* In other words, firm 1 has no incentive to deviate from p* to a lower price, and
therefore a steady state exists.

Notice that Proposition 1 only ensures that firm 1 will not deviate from p* and will always
deviate from another steady state, without guaranteeing that the price will also converge to
p*. The algorithm could converge to a policy function that leads to a cycle in general.” A
sufficient condition of V* leads to a p* is that ¢g* is a contraction, so that by the Banach
fixed point theorem, there exists a unique fixed point s* such that ¢g*(s*) = s* starting from

an arbitrary s°.

4 Automatic pricing software can update prices very frequently. Therefore, the discount factor 6 is typically
large.

50ne example is the zero-sum match pennies game that player 1 loses if the pennies match and wins
otherwise. If player 2 always chooses the action played by player 1 in the last period, then the best response
of player 1 is to switch action in each period and therefore there’s no steady state.



Proposition 2. A sufficient condition of the reinforcement learning algorithm converges to

a stationary point is

dg*
ds

|_ 25 (g7(5), g2(5)) g4(5)
22 (g°(5), g2(s)) + 6V (g*(5))

for s € §* ={s|3s s.t. g*(s') = s}.

In practice, it’s not necessary for researchers to check the condition in Proposition 2, and
sometimes it’s not possible to check the functional form. Although algorithms could converge
to a cycle instead of a steady state, Proposition 1 guarantees that if it does converge to a
steady state, it must be p* because of the uniqueness. Therefore, a more practical way is to
check the realized convergence.

With the information that an algorithm will converge to p*, we can now compare the
price in the hybrid stage with that in pre stage and examine the consequence of adopting an

algorithm.
Proposition 3. Under Assumption 1, p* > py and g2(p*) > po.

At the steady state p*, for any available price p’ € P, we have

m(p*, 92(p*)) = M (P, 92(p')),

and equality holds if and only if p* = p’. Thus, the optimal price of firm 1 will be p* instead
of pp and the new steady state is s* = (p*, g2(p*)).

Therefore, if the algorithm is able to fully learn the rival’s strategy, then there will be
a price increase in the hybrid stage compared to pre stage. Notice that we do not require
a specific algorithm to reach this conclusion. It instead holds for all algorithms that will

converge to the optimal policy g*.°

6 Although not the focus of this paper, it is worth noting that the price increase is driven by the full
information of firm 2’s rule (or policy function). Therefore, any algorithm that could learn the rule g, or
the optimal policy function ¢g* will lead to a price increase. Revealing its own rule may be beneficial, but it
could raise potentially antitrust concerns.

10



With the price increase in the market, both firms benefit from the adoption of the learning
algorithm of firm 1. We should see that, however, the two firms do not equally share the
market in the steady state. Firm 2 still has more market share than firm 1 due to its lower
price. Therefore, even if firm 1 is the firm that adopts the algorithm, firm 2 actually free
rides and gets more benefit than firm 1.

So far, we have considered a market in which firms share the same price space. It is more
realistic, however, that firms have asymmetric price spaces. For example, firms producing
identical goods but in different quantities, such as one wholesale and one retail firm, or
firms with asymmetric cost, have distinct profit functions and therefore different price space.
Firms producing differentiated products will have asymmetric demand functions and profit
functions.

In general, suppose that firms’ prices satisfy p; € P = [p, p}], ps € P = [pY, p}]. Firm
2 set its price according to a simple rule go(p;). We impose the following assumption in this

setting. Let h : P — P defined as

N p{w_piv N
hp) =p + Sr—x (0 —2)
Y2 V%)

and § = hogs. Then py = h(ps) = h(g2(p1)) = §(p) € P = [pl,p}]. We can
then impose Assumption 1 on G;(pi¢, Dje) = G(Piss §(Pii)) = 6i(pig, pje) and Ti(pi, Pje) =
Ti(Pit, §(pir)) = mi(pis, pj1). Therefore, Proposition 3 remains for p; and p, and we will still

observe a price increase.

2.3 Adoption Game

We now turn to the adoption game, where firms decide whether to adopt pricing algorithms
given the expected outcomes in the hybrid stage. In a market where both firms are using
rule-based strategies, the steady state is pg. Then the profit gain from adopting the algorithm
for firm 1 is given by nf = m(p}, 92(p})) > mo = m(po, po). The profit gain of firm 2 is

7y = ma(p}, 92(p7)) > ™1 (D}, 92(p})), since g2(p}) < pi. If we assume that the expected profit

11



of both firms when they are both adopting the algorithm is 7, the payoff matrix is then

shown in Table 1.7

Table 1: Payoff matrix of the adoption game.

Firm 2
Rule | Algorithm

Rule (m0,m0) (75,77)

Firm 1

Algorithm | (7f,75) (7,7)

There exists a pure strategy Nash equilibrium (Algorithm, Algorithm) if 7 > 7. Other-
wise, there exists a mixed strategy Nash equilibrium in which each firm adopts an algorithm
with probability (7] — mo)/(7] + 75 — m9 — @) and continues using rule with probability
(my — ) /(ny + 75 — w9 — 7). In this case, if one firm believes that the rival will adopt
an algorithm with high probability, the best response is to keep using the current rule. If

instead it believes that the rival is not likely to adopt an algorithm, the best response is to

start adopting.

2.4 Multiple Firms

The results in Section 2.2 could be extended to markets with multiple firms. Suppose that
there are n firms in the market. Firm 1 is the firm that leads the market, and decides whether
to adopt an algorithm.® Other firms are using an simple rule p; = g;(p1). We can treat firms

2 to n as a representative firm whose demand function and profit function is defined as

g-1(pp-1) =D 6i(p1,p2, -, pn)
=2

"Here we use the current period profit for simplicity of notation. The discounted profit is given by 1/(1—6)
times the current period profit and therefore would not affect the equilibrium.
8The Amazon buy box is one of the examples. Many automated software has an option to target only

the buy box price. This price leadership also exists in markets with coordination as in Byrne and De Roos
(2019)

12



n
T_1(p1,p-1) = Zpi % i(p1yp2s - - -, Pn)
=2

where the notation —1 stands for the representative firm aggregating all firms except firm 1.

We can then define the price of the firm —1 as

S i % qi(p1yD2, - -+ Dn)
Z?:z Qi(p17p27 cee >pn>

p-1=9-1(P1, P2, Pn) =
We will extend the assumptions in Assumption 1 to markets with multiple firms.
Assumption 2. For anyp € P = [pN,pM]
(i). 1 (p1,p2,-..,pn) is strictly concave.
(7). g;(p) < p,Vi> 1.
(iii). ™ (p) = 71 (p,p,...,p) is strictly increasing w.r.t. p.
(). g;(p) is continuous and weakly increasing w.r.t. p,¥i > 1.

(v). ¢i(p1,p2,...,Dn) is weakly increasing w.r.t. p; Vj # i.

It can then be derived that the market with firm 1 and —1 satisfies Assumption 1 when
the demand and profit functions are defined as above. Assumption 2(ii). and 2(v). can be
extended directly since the sum of concave (resp. increasing) functions preserves concavity
(resp. monotonicity), and Assumption 2(iii). follows from the fact that p_; = p; if g; is
identical across firms. Assumption 2(ii). and 2(v). can be derived by noting that p_; is a
weighted average of p; with positive weights and thus g_; is a finite linear combination of
g;. Therefore, proposition 3 holds in the shadow market. Moreover, the prices of firms 2 to

n also increase given g;(p*) > gi(po)-

Proposition 4. Under Assumption 2, p* > py and g;(p*) > po, Vi > 1.

13



3 Q-learning

The reinforcement learning algorithm we employ is @-learning. This algorithm targets the
@-function and learns iteratively by realized rewards. For an economic perspective, the (-
function produces the discounted profit given state and action, which can be interpreted as
the choice specific value function in dynamic programming. Unlike value function iteration
(VFI), policy function iteration (PFI), or other dynamic programming methods that require
full information about the environment and rich data, @)-learning can learn while making
decisions and updates policies in real time without requiring a closed-form solution to the
Bellman Equation.

Consider first a single agent problem with a stationary Markov decision process. In each
period t = 0,1,2,..., an agent observes a state s; € S and then chooses an action a; € A.
Both S and A are finite and time-invariant and A is state-independent. Agent receives a
payoff m; = m(s¢, a;), which could be stochastic, at each period ¢, then the system moves on
to the next state sy € 5.

Let a*(s) represent an optimal policy. The decision-maker’s problem is to maximize the

expected present value of discounted payoft:

Z 5ty Z R a*(st))] :
=0 t=0

where 0 < 1 represents the discount factor. Let V(s) denote the value of being in state s

E =E

V(s) = max { Efr|s, a] + SE[V(s')]s, a]},

acA

which represents the maximum discounted payoff in state s, and Q(s, a) be the choice-specific

value function
Q(s,a) = Elrfs, a] + 6 [m @(sza'ns,a} ,
a’e

which represents the future discounted payoff of taking action a at state s and choosing the

optimal policy function a*(s) in the future. Notice that Q-function is related to the value

14



function by

V(s) = max Q(s, a).

a€A

@-learning could deal with the case where both state and action are finite. Note that in such
case, (Q-function collapses to a matrix. If the ()-matrix were known, the optimization problem
could be solved by searching the maximizer of the specific row of ()-matrix corresponding to
state s, or

a*(s) = argmax Q(s, a).
acA

Therefore, as long as the (Q-matrix is known, without knowing any underlying model, the
agent is able to solve the optimization problem. (J-learning is an algorithm that estimates
the @-matrix using the following iterative procedure without model-based assumptions, i.e.,
it is model-free.

The Q-learning algorithm proceeds as follows. Starting from an arbitrary initial matrix
(o, the algorithm chooses an action a; at state s; for each time period t. After observing
the payoff 7, the algorithm updates one cell of ()-matrix according to the following learning
rule:

Qi1(s,a) = (1 — a)Q4(s,a) + a |m + 51;13( Qi(s',a)l,
where the weight « € [0, 1] is a step-size parameter, which determines the learning rate.
For all other cells s # s; and a # a;, the Q-value does not change. Since « is constant,
the algorithm puts the same weight on recent observations and the information from early
observations diminishes over time.

However, the agent may stuck to a suboptimal policy during the learning process above.
For example, if the agent doesn’t have a good expectation of -matrix, it’s very likely that
the initial matrix Qg is very different from (). For state s and an action a’ # a*, such that a’ is
not the optimal action at state s and Q(s,a’) < Q(s,a"), if Qo(s,a*) < Q(s,a’) < Qo(s,d’),
it is very likely that the algorithm prefers a’ to a* and never gets the chance to update
Qo(s,a*). If so, the algorithm will be stuck at a’ and never learn that a* is the optimal

action at state s.

15



In order to estimate a* and Q-matrix from an arbitrary initial matrix @)y, the algorithm
should be allowed to “make mistakes”, or to explore non-optimal actions. The method we
use in our analysis is the e-greedy model, which works as follows. The algorithm exploits
(chooses the currently optimal action) with probability 1 — &' and explores (randomizes
uniformly across all actions) with probability £'. The probability e’ decays with time and is
assumed to be et = e7# with 3 > 0.

In a repeated game described in Section 2, however, stationarity is usually not satisfied.
The state transition depends on the previous or current action of all players. Although con-
vergence is not guaranteed ex ante, it can be verified ex post. In our simulation, convergence
is achieved if, for all players, their current optimal policy functions do not change for 10°
consecutive periods. It diverges if it does not converge after 10® periods.

To be specific, we started with the initial Q? set for each firm and an initial state s'. At
the beginning of each period, each firm chooses an action based on its current Q! and state
s' by al = argmax Q(s', a) with probability 1 — &, and chooses a random action uniformly

a
from A with probability €. We then compare the optimal actions with the recorded actions.”
If they match for 10% consecutive periods for all firms, the algorithms converge and we stop
the simulation. Otherwise, we assume that firm has only one period of memory and the

state in the next period is defined as s'*' = (af, ..., a!). The Q-matrix is then updated by
Qs al) = (1 - )QHs' al) + ! + ImaxQl(s™, )
ac

where 7} = (a! — ¢) % ¢! is the profit of firm ¢ at period ¢. Table 2 provides the visualized

procedure of (Q-learning in our simulation in a pseudo-code form.

4 Simulation Results

This section presents the simulation setup and main findings. We begin by detailing the

parametrization of the model, including key market demand and pricing algorithm param-

9We are comparing the optimal actions without exploration.
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Table 2: @)-learning: pseudo code

Initialize QY (s, a)
t =1, s' = random
record actions Opt;(s)

while t < 108

arg max Q'(s',a) with prob. 1 — &

al = a
random with prob. &f = e 5t
if at == Opt;(s") for 10° continuous periods
break
else

Opt;(s') = at

1

end if

st = (a1, ay)

Qi(s,al) = (1 — a)Qi(s',al) + o |7t + 5maj(Qi(st+1, at)
ae

end while

eters. We then present four rule-based strategies — myopic, undercut, trigger, and ceiling
— that firms employ before any algorithm is adopted. Finally, we report the main results,
organized into four parts: the hybrid stage, the post stage (including the retrieve stage), the
deviation analysis that examines firms’ responses to exogenous shocks, and the shared profit

counterfactual, which explores outcomes under explicit coordination.

4.1 Parametrization

In our simulation, we follow the assumption that the firms are symmetric, and share a con-
stant marginal cost ¢ = 1 as in Calvano et al. (2020b). Each firm produces one product that

is differentiated and an outside option is available. To be specific, the vertical differentiation
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vi = 2,7 = 0, and horizontal differentiation p = 1/4; the logit demand is

Yi—Pit
€ 14
Qi,t(pi,ta pj,t) = N ;=P o

Yo tew

As for the parameters in the algorithms, the initial ()-matrix is set to the discounted

payoff that would accrue to player i if rivals randomized uniformly:

Za_iGA"71 T (a’i7 a’—i)
(1—0o)|A

Qi,O (S,Gi) =

Notice that the initial value of the algorithm does not consider the fact that the rival’s action
a_; is affected by the state, and the state transition depends on the actions. That is, the
algorithm is not cooperative by design, and will charge low prices to maximize its own profit.
As for learning parameters, we focus on a = 0.05 and 3 = 107%. For each rule that firm 2
uses, we run 1000 sessions.

We discretize the action set into A = {p',...,p'} of 15 equally spaced prices, where
p? = p" and p'* = pM. In this setup, the Bertrand price is about 1.472 and the monopoly
price is about 1.925. This is slightly different from the setup in Calvano et al. (2020b), as we
want the Bertrand price and monopoly price to be available to the firms. To have a clearer
view of the result, we will use the price grid instead of the absolute price value in the rest of
this section, i.e., p? stands for 1.472 and p'* stands for 1.925. We also normalize the profit

by
A, - 7T7;—7TN
P =
oM _— N

N

where 7; is the average profit of firm ¢ upon convergence, 7" is the profit in the static

Bertrand-Nash equilibrium, and 7 is the profit under full collusion (monopoly), so that

7y = m(pY,pV) and mn = m (pM, pM).

4.2 Rule-based Strategies

We take four most widely used rules as examples in the simulations: myopic, price undercut,

price trigger, and price ceiling. In the results hereafter, we also use rule names to represent
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the simulations that firm 2 is using the specific rule in the pre and hybrid stage. The rules

are defined as follows:

Myopic The myopic rule is applied when the firm only focuses on the current period profit
instead of the discounted profit, defined as follows:

Di (pj,t—l) = argmax; ; (Z% pj,t—l)
p

It is a rule that the rival is not seeking cooperation but just maximizing its own profit. In
the steady state, the prices are equivalent to those in a sequential game where the algorithm
moves first. The firm using rule, which moves later, therefore has a second-mover advantage
and will charge lower price as described in Gal-Or (1985) and Amir and Stepanova (2006).
The myopic rule requires that the firm knows not only the Bertrand price and monopoly
price, but also the market demand, therefore it is not widely seen as preset rules in automated
pricing software. However, it is still a good example to show how algorithms could seek tacit

collusion with an endogenous rule.

Undercut The undercut rule is the case where the firm knows nothing about the market
so it will just follow the rival’s price with a minimal price undercut. It can be specified as
follows:

Pjt—1 — Ap ifpjq > pN

Di (pj,t—l) =

v 0.W.

where Ap is the price grid step, and therefore p;,_ 1 — Ap is the highest price that is below
pji—1- In the standard Bertrand setup where the firm with lower price takes the whole
market, price undercut is the static optimal strategy. Although it is usually not optimal in
a market with continuous demand, this rule is widely used in automatic pricing software in

competitive markets, given its simplicity and straightforward intuition.

19



Trigger The trigger rule is a typical dynamic strategy where a firm charges the monopoly

price if the rival also does, and charges the Bertrand price otherwise. It’s described as follows:

pMif Pjt—1 = M

Di (Pj,t—l) =

N ow.

Unlike the previous two rules, which are the optimal strategies and best response functions in
some static games, the trigger rule is an optimal strategy in some dynamic games. Therefore,
there exist circumstances that firms would end up with supracompetitive prices, and that
the firm using trigger rule is seeking cooperation through punishment and reward. It’s also
well known as tit-for-tat since we assume that firms have only one-period memory. Green
and Porter (1984) and Abreu (1988) have demonstrated that price trigger strategy could

form a tacit collusive equilibrium.

Ceiling Firms using the ceiling rule will choose the same price as their rival with a price

ceiling, which is defined as follows:'°

pji—1 ifpj1 <p®
pi(pj,t—l) =
p¢ 0.W.

The ceiling rule is not commonly seen. The firm using this rule will choose to price the same
as the rival if the price is below some price ceiling p¢ < p™, and will price at the ceiling
otherwise. This happens when the firm is using an automatic pricing software but fails to
realize the highest price it can charge. In the simulation, we pick p¢ = p”. The ceiling rule
is used as a robustness check because it is the rule that firm 1 yields the lowest profit when
price is greater than pyg.

All four rules mentioned above can lead to a steady state where both firms price the
same as static Bertrand price as discussed in our theoretical model. Trigger could also lead

to the static monopoly price, if firms start at some specific state, while ceiling could end up

10Tt collapses to a constant price if p© = p™.
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charging any price smaller than or equal to p©. These steady states are not guaranteed to
be equilibrium, especially with logit demand. Firms, however, are not able to deviate since
they can only observe their rival’s action but not strategy as assumed.

Besides the timing mentioned in Figure 1, we also include the results when firm 2 retrieves
the adoption of the algorithm in the post stage after convergence and uses a rule again.
Specifically, we record the Q-matrix of each firm every 10° periods. After the first algorithm
converges, we record the convergence time and equally draw 5 points from the recorded
(-matrices. We start again from each time period when the )-matrix was selected and
examine the counterfactual in which firm 2 adopts an algorithm at that time. After both
algorithms converge, we let the firm 2 to retrieve the adoption of the algorithm and use the
same rule again as in the hybrid stage. The time period after the post stage is referred to

as the retrieve stage hereafter.

4.3 Results

In this section, we present the simulation results. We first report the results in the hybrid
stage and then move to the results in and after the post stage. To examine firms’ incentives
to deviate, we exogenously force firm 1 to deviate from the converged policy and adopt a
myopic rule that maximizes its current period profit after the retrieve stage. Finally, we
explore the shared profit counterfactual, where firms coordinate explicitly to maximize joint

payofs.

4.3.1 Hybrid Stage

We first compare the difference between hybrid stage and pre stage, i.e., the price change
when firm 1 starts to adopt an algorithm. We can see from Table 3 that all results satisfy
Proposition 3 and end up with a price increase. The steady states of myopic and undercut
rules are both higher than the initial steady states, while steady states of trigger and ceiling

are both the same as the highest possible price in pre stage, respectively. Notice that for the
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trigger rule, the pre steady state and hybrid steady state are both the monopoly price. For

all four rules, the hybrid steady states observed are the same as theoretical prediction. In

Table 3: Converged results in hybrid stage with 3 = 10~°

Predicted Observed

Rule Pre s-s Hybrid s-s  Probability A
Myopic (p%,p%) (p®, p°) 100% (0.18,0.85)
Undercut (p%,p%) (p**, p'?) 100% (0.84,1.15)
Trigger (p', p') or (p?, p?) (p', p') 100% (1.00,1.00)
Ceiling any (p,p) s.t. p<p"  (p",p") 100% (0.61,0.61)

Notes: The observed probability is the probability that prices converge to the predicted

steady state in simulations.
all four rules, firm 2 yields a weakly lower price and therefore has higher market share and
profit than firm 1. Among them, prices of firm 1 in the undercut and trigger rules converge
to monopoly price, while prices of firm 2 in the trigger rule also converges to monopoly price
and price in the undercut rule converges to the price smaller than monopoly price due to the
price undercut. The profits in these two rules are also relatively high, with A = 1 for both
firms in trigger (both firms earn monopoly profit). Converged prices in myopic and ceiling
are smaller than the monopoly price, while they are higher than the steady state in the pre
stage. For the most competitive rule, myopic, the difference between the profits of the two
firms is the largest.

The converging paths of all four rules with 3 = 107¢ are shown in Figure 2. Each point
on the graph is an average of the first 60 periods for every 10° periods.!'! We can see that the
algorithms tend to reduce the price at the beginning for the myopic, undercut and ceiling
rules, which shows that the algorithms are not collusive by design. After some periods, each

algorithm learns to cooperate with the rule and starts to increase the price, until it reaches

'When the price cycle length is 1,2,..,6, the average price of 60 periods is always numerically the same as
the average price of a cycle.
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Figure 2: Converging path in hybrid stage
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the theoretically optimal price. Although the learning paths differ across simulations, we
can see that they end up converging to the optimal price with 100% probability.

We then switch to the extensions of asymmetric or multiple firms. Table 4 presents the
results of three firms, where firm 1 adopts an algorithm and the other two use the rule.
Note that the prices in the undercut did not converge to the predicted steady state because
it requires 99 = 0.998. Results for all other rules is consistent with our prediction. Table
5 presents the result where firm 2 has a higher cost that equals 1.1c. All results except
undercut are the same as predicted. About 25% of the simulations converge to (p'4,p'?),
which yields about 0.56% of profit loss compared to the predict one. This difference is too
small and sometimes the algorithm fails to converge to p*. We will discuss more on the

parameter selection in Section 5.2.

Table 4: Converged results in hybrid stage with three firms

Two-Firm  Three-Firm Observed

Rule Pre s-s Hybrid s-s  Hybrid s-s Hybrid s-s

Myopic (%, p?) (%, p°) (%, p°, %) (%, p°, %)
Undercut (P, %) (™, p'3)  (p%,pM, pHh)  (p'2, pils pl1s)

Trigger  (p',p'*) or (p%,p?)  (p*,p") (", p",p") (", p*,p")

Ceiling  any (p,p) st. p<p”  (p",p") (p",p", p") (", p",p")

Notes: The Two-Firm Hybrid s-s stands for the predicted hybrid steady state in market with
two firms as in the baseline. The Three-Firm hybrid s-s stands for the predicted hybrid steady
state in market with three firms.

4.3.2 Post stage

To see the results in the post stage, consider that firm 2 adopts an algorithm at ¢, periods
when firm 1 did at time 0 as described in Figure 1. We select 5 different t, that are equally
spaced from {0,1 x 10°,2 x 10°,..., T}, where T is the time when the algorithm of firm 1

converged. Any ty > T should yield a very similar result to to = T.
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Table 5: Converged results in hybrid stage with asymmetric costs

Symmetric Asymmetric Observed
Rule Pre s-s Hybrid s-s  Hybrid s-s Hybrid s-s
Myopic (»*, 1) (»*,p°) (»",p") (", p")
Undercut (p27 p2> <p147 p13) <p15’ p14) (p14~15’ p13N14)
Trigger  (p**,p"*) or (p*,p%) (@, 0") (" p") (p", ")
Ceiling  any (p,p) s.t. p<p”  (p",p") ", p") ®".p")

Notes: The Symmetric Hybrid s-s stands for the predicted hybrid steady state when firms
are identical. The Asymmetric hybrid s-s stands for the predicted hybrid steady state when
firms have asymmetric marginal cost.

Figure 3 shows the results from ¢ = 0. The black unmarked line is the converging line in
hybrid stage where firm 2 never adopts an algorithm. Since we stop the simulation when we
observe empirical convergence, we use dashed lines for prices in periods that are not actually
observed to avoid confusion. The x-axis has two parts — absolute time and relative time,
separated by a vertical dashed line. The hybrid and post stages are the absolute periods.
Since the retrieve stage starts after the post period, we align the relative periods after the
vertical dashed line.

For the post stage, we can observe a clear pattern that the algorithms start to reduce the
price at the beginning and learn to cooperate and increase price later. Although we observe
price increases for the myopic and ceiling rules compared to hybrid stage, it is difficult to
predict their converged prices. The results also depend on the rule as well as the adoption
time ¢, with no clear pattern.

We can see a clearer result in Figure 4. The blue dashed and red dotted lines are the
prices observed in the hybrid stage for firm 1 and 2, respectively. We can see that under the
myopic rule, the prices keep increasing when firm 2 also adopts an algorithm. The profit of
firm 1 increases significantly (A increases from about 0.2 to about 0.9) so that firm 1 benefits

from the adoption of firm 2, but firm 2 itself does not benefit much from its own adoption.
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Figure 4: Converged results in post stage
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Things are similar with the ceiling rule, while A increases from about 0.6 to about 0.9 for
both firms.

As for the undercut and trigger rule, where the prices are already close to the monopoly
price in the hybrid stage, the algorithm of firm 2, however, fails to continue charging the
monopoly price. One reason is that the exploration by algorithms increases the profit of
deviation and reduces the profit of charging the monopoly price, causing algorithms to
deviate from the monopoly price in early periods.'? While learning from the environment
and also from the rival, the monopoly prices are no longer the best response to the policy of
the rival’s algorithm. The profit of firm 1 is nearly unaffected in undercut, while A of firm
2 is reduced by about 0.3. The A of both firms is reduced by about 0.1 in the ceiling rule.

As for the retrieve stage, regardless of to, it will converge to the same price as in the
hybrid stage. We also notice that here the initial ) value does not affect the converging
path much, as the paths in the retrieve stage almost coincide with each other. This is
consistent with our theoretical prediction that no matter what initial value is, as long as the
algorithm converges, it will converge to the predicted price when only one firm is using the

algorithm.

4.3.3 Deviation

To conclude that the algorithms are in tacit collusion, it’s not enough just to show their prices
in the steady states. We would also want to know how they would act in other circumstances
and whether the results are just by chance. However, we are unable to describe the policies
given the fact that there are 225 possible states in our simulation.

One key factor of tacit collusion is whether a firm would send a signal to the rival that it
will cooperate. Therefore, we test by forcing firm 1 to deviate after firm 2 retrieves. Figure 5

shows how firms would response if firm 1 is forced to deviate at the 6th relative period after

12The algorithm will charge randomly with some probability in any state. Therefore it’s less likely for an
algorithm that’s still learning to punish the deviation than a simple predetermined rule.
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Figure 5: Deviation results
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it converges.'> Each point in the figure is the average of 1,000 simulations in that relative
period. Firm 1 will use the myopic rule and charge the price that maximizes its current
period profit at relative period 6. For any other relative periods, the firms are just pricing
with their own policy — firm 1 with the converged algorithm and firm 2 with the simple
rule.

We observe that firm 2 punishes firm 1 for this deviation differently according to the rule
it uses at relative period 7, the period after the deviation occurs. Firm 1, however, will not
continue to charge low prices, but will start to raise prices in that period. This is consistent
with our theoretical prediction that the static optimal price p* is numerically the same as

the dynamic optimal price and thus will prevent deviation.

13Figure 5 shows the results when to = T'. The results for different ¢, are very similar to those in Figure
5 and thus omitted.
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4.3.4 Shared Profit

So far we have been discussing how algorithms could lead to tacit collusion that is not
directly covered by existing antitrust regulations. Prices could increase even further if explicit
collusion occurs when firms share their profits. In this subsection, we assume that the firms
share profits and they equally split the profit earned in each period. We continue to assume
that firms are not communicating, such that firm 1 is using an algorithm while firm 2 is
using a rule, because otherwise the optimal price will always be the monopoly price and not

worth analyzing.

Table 6: Converged results in hybrid stage of firms with shared profit

Separated Shared Observed

Rule Pre s-s Hybrid s-s  Hybrid s-s  Hybrid s-s
Myopic (»*, %) @%p°) %) D7)
Undercut »*, %) @) @) 0%p")

Trigger  (p',p") or (»*,p%) (™. p") (™"  (“.p")

Ceiling  any (p,p) s.t. p<p’  (p',p") (20" (%"

Notes: The Separated Hybrid s-s stands for the predicted hybrid steady state when
firms earn their separate profit. The Shared hybrid s-s stands for the predicted hybrid
steady state when firms share and equally split the profits they earned.

Table 6 shows the steady states observed in our simulation, and Figure 6 shows the
converging path. Prices predicted in tacit and explicit collusion are labeled as “Separated
Hybrid s-s” and “Shared Hybrid s-s” respectively. The results in the simulations are in the
column “Observed Hybrid s-s”.

In summary, we do see prices go up in an explicit collusion compared to a tacit collusion.
In the myopic and ceiling rules, where the prices were not as high as the monopoly prices
in a tacit collusion, the prices increase significantly when firms share their profits. Prices in

undercut, however, even exceed the monopoly price.'* We can see that even if the algorithms

14In Assumption 1 we assume that the price is less than or equal to the monopoly price and greater than

30



Price grid

Price grid

Price grid

12

10

Price grid

©

12

-
o

©

—
IS

-
N

=
o

©

Figure 6: Converging path in hybrid stage: shared profits

.
© 10
)
S
a
6
E L L L L T 4 L L L 1 1
20 40 60 80 100 0 20 40 60 80 100
Time x 10° Time x 10°
(a) Myopic: Firm 1 (b) Myopic: Firm 2
14
- 12
=
o
g
o

©

Static Optimal 6
| | | | T L L L
0 20 40 60 80 100 0 20 40 60 80 100
Time x 10° Time x 10°

(c¢) Undercut: Firm 1

(d) Undercut: Firm 2

125 |
o 100
I~
o
Y st
=
o
5.0 F 5.0 F
25 L . . . ] Statlf Optimal 25 | . . . ) Statlf Optimal
20 40 60 80 100 0 20 40 60 80 100
Time x 10° Time x 10°
(e) Trigger: Firm 1 (f) Trigger: Firm 2
M v Y (— Static Optimal
10
S
=
o
)
L 8r
=
o
6 6
fffff Static Optimal
. . . . . I \ \ . . \
0 20 40 60 80 100 0 20 40 60 80 100
Time x 103 Time x 10°

Notes: The red dashed line indicates the predicted steady state. The shaded area represents the range from

(g) Ceiling: Firm 1

(h) Ceiling: Firm 2

the minimum to the maximum price grid, and the black line is the average price grid over time.

31



are already in a tacit collusion with rules and raise the prices, sharing profits will make the

situation even worse.

5 Robustness

In this section, we extend our simulation results in the hybrid stage to alternative parameters

and setups. The results show that the baseline findings are robust to parameters.

5.1 Less Patient Firms

As we discussed in Section 2, Proposition 1 assumes that the discount factor § is greater
than some dy. Specifically, the oy for the four rules used in our analysis are shown in Table
7. ¢ is usually assumed large given the fact that algorithms can response to environment
changes in real time. However, there are also circumstances in which firms are not able to
change prices frequently. This could be due to the menu costs, and also regulations as in
Byrne and De Roos (2019). Here we discuss the counterfactual when we have less patient

firms that violate the assumption and § = 0.5.

Table 7: 9 for rules

Rule Myopic Undercut Trigger Ceiling

do 0.945 0.915 0.478 0.380

As seen in table 7, myopic and undercut rules would violate the assumption since § =
0.5 < dp, and therefore are not predicted to converge to the static optimal price. We run
simulations on all four rules, and the results are shown in Table 8. The results are as expected

that the converged prices in the myopic and undercut rules are not the same as predicted,

or equal to the Bertrand price when firms do not share their profits.
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while they remain the same for the trigger and ceiling rules. The converging path is shown

in Figure 7.

Table 8: Converged results in hybrid stage of less patient firms

Predicted  Observed

Rule Pre s-s Hybrid s-s  Hybrid s-s
Myopic (»*,p%) (»*,p°) (', p°)
Undercut (p%, p%) (pM, Plg) (P87 P7)

Trigger  (p'*,p*) or (p%,p*)  (p*,p")  (p*,p")

Ceiling  any (p,p) s.t. p < p’ (p",p") (p",p")

Notes: The predicted Hybrid s-s stands for the predicted hybrid steady
state when firms has large § = 0.95. The observed hybrid s-s stands for
the steady state in results when firms are less patient and have § = 0.5.

It is worth noting that although Proposition 3 does not hold for § < dy, the optimal
policy function g* still has a fixed point. In Figure 7 we see that the algorithms converge
to a steady state in all simulations. The sensitivity of ¢* with respect to 6 depends on the
derivative of go, which can be interpreted as the punishment of a strategy. The price trigger
strategy has stronger punishment and therefore requires less 0 to preserve the monopoly
price compared to price undercut strategy, which does not punish deviation and requires a

very large ¢ to keep the steady state of monopoly price.

5.2 Refined Initialization

In Section 4, we discussed the results when we set 8 = 107%. Although the uniqueness of
steady state is guaranteed by Proposition 1, it is not always observed that prices converge
to p*. In practice, the convergence of ()-learning depends on the environment as well as
parameter selection. Two key parameters are the initial value and the exploration rate.
Table 9 and Figure 8 show the results when the algorithm explores less and 8 = 107, while

keeping the initial @)y identical to that in Section 4.
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Figure

7: Converging path in hybrid stage: less patient firms
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Figure 8: Converging path in hybrid stage: less exploration
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Figure 9: Converging path in hybrid stage: better initial value
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Table 9: Converged results in hybrid stage of firms with less exploration

Predicted More Exploration  Less Exploration

Rule Pre s-s Hybrid s-s Hybrid s-s Hybrid s-s
Myopic (p?,p?) (p®,p°) (p®,p°) (p%,p°)
Undercut (p%,p?) (p*, p*3) (p', p'?) (p'* ~ p't, p? ~ p'%)
Trigger  (p'*,p") or (p*.p*)  (p",p") (p*, p') (p', p'*)
Ceiling  any (p,p) s.t. p<p’  (p",p") (p",p") (p",p")

Notes: The More Exploration Hybrid s-s stands for the predicted hybrid steady state when g = 1075,
The Less Exploration hybrid s-s stands for the predicted hybrid steady state when 3 = 107°.

We observed different results for the undercut rule. In particular, the algorithms fail to
converge to the predicted steady state, and sometimes even fail to converge to a steady state
but rather converge to a cycle. As we discussed in Section 3, the convergence in practice
is defined as the policy function not changing for 10° periods, while it is not considered
convergence in theory if different simulations converge to different prices. This violates the
key assumption that the algorithm should converge. However, we are still able to obtain the
same results with less exploration. Suppose that we have a smart Al that we can guess the

initial value quite well that
™ (i, g2(a—;))

Qi,o (S,az‘) = (1 — 5)

Notice that this initial value is not the same as the actual @)-value, because it’s just the
discounted profit if the firm sets price a; forever, which is not the optimal action in most

states. Even so, we are able to observe the results exactly as predicted as shown in Figure 9.

6 Conclusion

This research sheds light on the impact of pricing algorithm adoption on tacit collusion and
its interaction with rule-based strategies in competitive markets. Starting with both firms in

the market employing rule-based strategies, we developed a theoretical model that shows a
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weak increase in price when the first firm starts to adopt a reinforcement learning algorithm.
The firm maintaining a rule-based strategy can “free ride” and benefits more from the other
firm’s adoption. The analysis relies on broad assumptions about the convergence of the
algorithm and the properties of the rules. The results can also be extended to more general
markets. We further show that when the likelihood of rivals adopting algorithms is high, it
may be optimal for some firms to continue using rule-based strategies.

Simulation results with ()-learning coincide with the theoretical predictions across several
widely used rule-based strategies. Our robustness checks, including analyses of less patient
firms and different algorithm specifications, affirm that our main findings hold under a variety
of market assumptions. Moreover, we find that while standard antitrust policies focused on
restricting communication are effective in prohibiting explicit collusion, they have limited
effect on tacit collusion. These findings provide a foundation for future research and inform
the design of regulatory policies for markets increasingly shaped by pricing algorithms.

There are a few directions for future work. First, we focus on the steady state to which
a reinforcement learning algorithm converges within a stationary Markov process in the
theoretical model. Future research can extend the analysis to nonstationary environments.
Second, because algorithm adoption is not required to be public under current antitrust
policy, this paper emphasizes theoretical and simulated results, leaving empirical validation
for future work. Both extensions will provide deeper insights into the emerging literature on

algorithmic pricing and tacit collusion.
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Appendix

This appendix collect supplementary materials. Appendix A contains detailed proofs of
Lemmas and Propositions in Section 2. Appendix B shows the myopic strategy given the

logit demand in our simulation in Section 4.

A  Proofs

We provides detailed proofs of Lemmas and Propositions in Section 2.

Proof of Lemma 1.

Proof. p1o = g2(p2,0) < p2o and pap = g1(p1,0) < p1o- SO p1o = Pao- []

Proof of Proposition 1.

Proof. By Brouwer fixed point theorem, ¢g* always has at least one fixed point. Suppose by
contradiction that there exists another price p’ # p* that is a fixed point. We will show that
firm 1 will always deviate from p’ to p* so that p’ is not a steady state, i.e., p’ # ¢*(p') and
P’ is not a fixed point of g*. Denote the difference of profit of deviating from p) to p* as A,

we know that
Ar = (" 920) + 570", 2 (07)) )
= (0 920 + 72570 20,
since the discount profit of state p* is greater than or equal to l—iéﬁ(p*, g2(p*)), which is

the profit if firm 1 choose p* forever.

e When p' > p*, we have 7 (p/, g2(p')) < 7 (p", 92(p")) < 7(p", 92(p)). Note that m is

weakly increasing w.r.t. ps because for m (p1,p2) = (p1 — ¢)q1(p1, p2), we always have

0
— = —c)— > 0.
8p27T1(p17p2) (pl C)a =

Combined with 7(p*, g2(p*)) > 7 (¢, g2(p')), we have Ar > 0.
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e When p' < p* and 7 (p', g2(p')) < 7(p*, g2(p')), we still have A7 > 0.

e When p/ < p* and w(p/, g2(p)) > 7 (p*, g2(p')), we can rewrite the right hand side as

Ar > (70", 020) — 7 (0, 02(0) )

155 (70" 027) — 7 20

1)

where A <0 and B > 0. Let §o = —A/(B — A) € [0,1), for any 6 > &y, A1 > 0.

Therefore, there always exists a dy € [0, 1) such that Vo € (g, 1), A > 0, so that firm 1 will
always deviate from p’ to p*, which contradicts with that p’ is a fixed point. Therefore p* is

the unique fixed point. n

Proof of Proposition 2. Proposition 2 directly follows by implicit differentiation from

the Bellman equation and is therefore omitted.

Proof of Proposition 3.

Proof. Since m; is weakly increasing w.r.t. ps, under Assumption 1(iii). and 1(ii)., for any

price p < po, we have 7 (p, g2(p)) < m1(p,p) < m1(po, po). Therefore, p* > py.

Under assumption 1(iv)., we have g2(p*) > ¢2(po) = po. O

Proof of Proposition 4. The proof of Proposition 4 is analogous to that of Proposition

3 and is therefore omitted.

B Myopic Price of Logit demand

We provide in this section the price that firm would charge with myopic rule given the rival’s
price in a duopoly market. Firms are maximizing the per period profit

(i~ e = ) el
T = \Pi — Ci)qi = \Pi — Gi) - - - .
exp(22) + exp(HH) + exp(1})
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The optimal price derived by the first order condition is

1 o exp(IEE) + exp(F5H) +exp()
1—g exp( B+ eXP(%)

:c~+u<1—|— exp( 2) )
Z exp(1-H) + exp(1})

We can then get

el N (el S exp(+22)
Iz z exp(*5H) + exp(%})
G 2ipi 2i=Pi
exp ( m 1) - exp ( p ) . exp < p >
exp(1H) + exp(%) exp(* ) +exp(L) | exp(FH) + exp(2)

The solution is given by

exp <%;pi> exp <%;c@- _ 1)
=W
Yi—Pj 20 i —Pj
exp( m >+exp <7> exp( m

) + exp (1—0)

where W is the LambertW function. Using the logarithmic property of the LambertW
function In(W(x)) = In(z) — W(x), we get

. o exp(”’ C’—l)
i Di _ Yi & W 12
1t 1 %i=Ps %
exp( ]u J) +exp<u>
exp (—7’;‘” — 1>
exp (—”;pj> + exp (L—O)

p; = ¢+ p+pWw
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